Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pollut Rep ; 9(1): 46-59, 2023.
Article in English | MEDLINE | ID: mdl-36743476

ABSTRACT

Purpose of Review: In the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received widespread attention from researchers. As a disinfection technology that can adapt to different environmental media, microwave-assisted disinfection has the advantages of strong permeability, no secondary pollution, etc. The purpose of this review is to put forward new development requirements for future microwave disinfection strategies by summarizing current microwave disinfection methods and effects. From the perspective of the interaction mechanism of microwave and microorganisms, this review provides a development direction for more accurate and microscopic disinfection mechanism research. Recent Findings: Compared to other traditional environmental disinfection techniques, microwave-assisted disinfection means have the advantages of being more destructive, free of secondary contamination, and thorough. Currently, researchers generally agree that the efficiency of microwave disinfection is the result of a combination of thermal and non-thermal effects. However, the performance of microwave disinfection shows the differences in the face of different environmental media as well as different types of microorganisms. Summary: This review highlights the inactivation mechanism of microwave-assisted disinfection techniques used in different scenarios. Suggestions for promoting the efficiency and overcoming the limitations of low energy utilization, complex reactor design, and inaccurate monitoring methods are proposed.

2.
Sci Total Environ ; 871: 162023, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36739032

ABSTRACT

Soil pollution caused by complex organochloride mixtures has been increasing in many parts of the world in recent years; as a result, countless numbers of people are exposed to dangerous pollutions; hence, the treatment of organochlorides-polluted soils is gaining considerable attention. In this study, the potential of unactivated peroxymonosulfate (KHSO5) in remediating soil co-contaminated with trichlorophenol, para-dichlorobenzene, and para-chloro-meta-cresol was investigated. In addition, the treatment's collateral effect on critical soil properties was explored. The result revealed that treating 10 g of soil with 20 mL of 5 mM KHSO5 for 60 min could oxidize 70.49% of the total pollutants. The pH of the soil was decreased following the treatment. The significant decrease, (p < 0.05), in the soil organic matter following the remediation has affected cation exchange capacity, and available nitrogen. It was also observed that the treatment reduced the ß-glucosidase, urease, invertase, and cellulase activities significantly, (p < 0.05). The treatment, on the other hand, brought negligible effects on available phosphorus, available potassium, and particle size distribution. The phytotoxicity tests, which included seed germination and root elongation and soil respiration tests revealed that the treatment did not leach toxins into the treated soil. The treatment method was found to be relatively ecofriendly and cost effective.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Soil Pollutants , Humans , Soil/chemistry , Soil Pollutants/analysis , Environmental Pollution/analysis , Organic Chemicals
3.
Article in English | MEDLINE | ID: mdl-35410010

ABSTRACT

Antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) as new types of contaminants are discharged into the environment, increasing the risk of horizontal gene transfer (HGT). However, few researchers have examined the impacts of airborne ARB deactivation on HGT risk. The deactivation of airborne Escherichia coli 10667 (carrying sul genes) and the emission and removal of ARGs were mainly investigated in this study. Moreover, the potential mechanisms of HGT and transfer frequencies under microwave (MW) and ultraviolet (UV) irradiation were investigated using the nonresistant E. coli GMCC 13373 and E. coli DH5α with plasmid RP4 as the recipient and donor, respectively. E. coli CICC 10667 and E. coli DH5α with RP4 plasmid achieve log inactivation values as high as 5.5-log and 5.0-log, respectively, which were quite different from the antibiotic-sensitive strain E. coli CGMCC 13373 (3.4-log) subjected to MW irradiation. For UV disinfection, E. coli DH5α with the RP4 plasmid was reduced at 4.4-log, E. coli CGMCC 13373 was reduced at 2.3-log, and E. coli CICC 10667 was inactivated at 2.1-log. The removal rates of ARGs and HGT frequencies under MW irradiation were compared with those under UV irradiation. The ARGs removal efficiency (85.5%) obtained by MW was higher than that obtained by UV (48.2%). Consequently, the HGT frequency (0.008) of airborne ARGs released to the recipient (forward transfer) decreased and was lower than that under UV irradiation (0.014). Moreover, the plasmid RP4 was transferred from the donor to the surviving damaged E. coli 10667 as cell permeability (reverse transfer) was increased at a high HGT frequency (0.003) by MW, which was close to the value by UV (0.002). Additionally, sul1 and sul2 genes were confirmed to be more resistant to MW than the sul3 gene. These findings reveal the mechanism of HGT between damaged E. coli 10667 and surrounding environmental microbes. Microwave is a promising technology for disinfecting airborne microbes and preventing the spread of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/radiation effects , Genes, Bacterial , Microwaves
4.
Sci Total Environ ; 832: 155033, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35390386

ABSTRACT

Bioaerosol as an important medium has aroused widespread concern on its potential hazards in disease transmission and environment biosafety. However, little is known about the duration and self-decay of airborne bacteria in the atmosphere environment. Further, the self-decay process is proposed to include biological-decay and physical-decay. At present, there are many reports on the bacteria apoptosis mechanism and airborne particle migration. However, few studies focus on self-decay during the physical movement of airborne bacteria. The present study investigated self-decay laws and efficiencies of airborne bacteria in the sealed reactor under room temperature (18 ± 2 °C, RT) and low temperature (3 ± 2 °C, LT). The self-decay rate constants of 0.0089, 0.0133, 0.0092, and 0.0122 min-1 were obtained under RT-E. coli, LT-E. coli, RT-S. aureus and LT-S. aureus, respectively. There was no significant difference between the self-decay efficiency of gram-negative and gram-positive bacteria under the same conditions. Nevertheless, gram-negative bacteria were more sensitive to temperature change compared with gram-positive bacteria, where the self-decay efficiency of gram-negative under LT was 49% higher than that under RT, and the value of gram-positive was 32% at the same condition. Furthermore, the laws of biological-decay and physical-decay conformed to the first-order kinetic model by theoretical derivation. Biological-decay accounted for 59.5% at RT and 88.5% at LT among self-decay, which is mainly caused by energy absorption, environmental stress, and bacterial structure changes. Physical-decay mainly caused by gravity settlement accounting for 40% at RT and 10% at LT among self-decay, approximately. Meanwhile, the influence of environmental factors on self-decay was mainly reflected in the biological-decay process. Overall, it is of great significance for clarifying the changing laws of bioaerosol and controlling the transmission of airborne bacteria.


Subject(s)
Air Microbiology , Escherichia coli , Bacteria , Gram-Positive Bacteria , Kinetics , Staphylococcus aureus , Temperature
5.
J Hazard Mater ; 429: 128311, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35074752

ABSTRACT

In this study, based on the dynamic photocatalytic reactor constructed by the new photocatalyst TiO2/MXene, the purification process of different biological particles in aerosol was systematically studied. Multidrug resistant bacteria were easier to inactivate than common bacteria of the same kind, whether under UV conditions or photocatalysis. Photocatalyst was loaded on porous polyurethane sponge filler so that the combined effect of adsorption and advanced oxidation significantly improved the antibiotic resistant bacteria (ARB) disinfection effect. The inactivation efficiency of two ARBs under UV254 increased by 1.2 lg and 2.1 lg. In addition, it was found that the microorganisms treated by UV had slight self-repair phenomenon in a short time, while the microbial activity decreased continuously after photocatalysis. With the addition of photocatalyst, the particle size distribution of airborne Escherichia coli decreased and the micro morphology of cells was more seriously damaged. Antibiotic resistance genes (ARGs) carried by ARB can be dissociated into the environment after cell destruction, but it can be removed at a high level (sul2 can achieve 2.11 lg) in the continuous reactor at the same time. While avoiding secondary pollution, it also provides a powerful solution for airborne ARGs control.


Subject(s)
Angiotensin Receptor Antagonists , Wastewater , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Disinfection , Drug Resistance, Microbial/genetics , Genes, Bacterial , Wastewater/analysis
6.
Water Res ; 212: 118090, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35085844

ABSTRACT

Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), as emerging pollutants, are released into environment, increasing the risk of horizontal gene transfer (HGT). However, a limited number of studies quantified the effects of ARB disinfection on the HGT risk. This study investigated the inactivation of E. coli 10667 (sul) and the release and removal of ARGs using an electrochemical flow-through reactor (EFTR). Furthermore, the transfer frequencies and potential mechanisms of HGT after disinfection were explored using non-resistant E. coli GMCC 13373 as the recipient and E. coli DH5α carrying plasmid RP4 as the donor. A threshold of current density (0.25 mA/cm2) was observed to destroy cells and release intracellular ARGs (iARGs) to increase extracellular ARGs (eARGs) concentration. The further increase in the current density to 1 mA/cm2 resulted in the decline of eARGs concentration due to the higher degradation rate of eARGs than the release rate of iARGs. The performance of ARGs degradation and HGT frequency by EFTR were compared with those of conventional disinfection processes, including chlorination and ultraviolet radiation (UV). A higher ARGs degradation (83.46%) was observed by EFTR compared with that under chlorination (10.23%) and UV (27.07%). Accordingly, EFTR reduced the HGT frequency (0.69) of released ARGs into the recipient (Forward transfer), and the value was lower than that by chlorination (2.69) and UV (1.73). Meanwhile, the surviving injured E. coli 10667 (sul) with increased cell permeability was transferred by plasmid RP4 from the donor (Reverse transfer) with a higher frequency of 0.33 by EFTR compared with that under chlorination (0.26) and UV (0.16). In addition, the sul3 gene was the least resistant to EFTR than sul1 and sul2 gene. These findings provide important insights into the mechanism of HGT between the injured E. coli 10667 (sul) and environmental bacteria. EFTR is a promising disinfection technology for preventing the spread of antibiotic resistance.


Subject(s)
Disinfection , Escherichia coli , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Microbial/genetics , Escherichia coli/genetics , Gene Transfer, Horizontal , Genes, Bacterial , Ultraviolet Rays , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...