Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 238: 107596, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37201251

ABSTRACT

BACKGROUND: Of the large number of genetic variants identified, the functional impact for most of them remains unknown. Mutations in DNA damage repair genes such as MUTYH, which is involved in repairing A:8-oxoG mismatches caused by reactive oxygen species, can cause a higher risk of cancer. Mutations happening in other key genes such as TP53 also pose huge health threats and risk of cancer. The interpretation of genetic variants' functional impact is a forefront issue that needs to be addressed. Many different in silico methods based on different principles have been developed and applied in interpreting genetic variants. However, a current challenge is that many existing methods tend to overpredict the pathogenicity of benign variants. A new approach is needed to tackle this issue to improve genetic variant interpretation through the use of in silico methods. METHODS: In this study, we developed another protein structural-based approach called Dihedral angle-reliant variant impact classifier (DARVIC) to predict the deleterious impact of the coding-changing missense variants. DARVIC uses Ramachandran's principle of protein stereochemistry as the theoretical foundation and uses molecular dynamics simulations coupled with a supervised machine learning algorithm XGBoost to determine the functional impact of missense variants on protein structural stability. RESULTS: We characterized the features of dihedral angles in dynamic protein structures. We also tested the performance of DARVIC in MUTYH and TP53 missense variants and achieved satisfactory results in reflecting the functional impacts of the variants on protein structure. The method achieved a balanced accuracy of 84% in a functionally validated MUTYH dataset containing both benign and pathogenic missense variants, higher than other existing in silico methods. Along with that, DARVIC was able to predict 119 (47%) deleterious variants from a dataset of 254 MUTYH VUS. Further application of DARVIC to a functionally validated TP53 dataset had a balanced accuracy of 94%, topping other methods, demonstrating DARVIC's robustness. CONCLUSION: DARVIC provides a valuable tool to predict the functional impacts of missense variants based on their effects on protein structural stability and motion. At its current state, DARVIC performed well in predicting the functional impact of the missense variants both in MUTYH and TP53. We expect its high potential to predict functional impact for the missense variants in other genes.


Subject(s)
Mutation, Missense , Neoplasms , Humans , Algorithms
2.
Int J Cancer ; 152(6): 1159-1173, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36385461

ABSTRACT

Pathogenic variation in BRCA1 and BRCA2 (BRCA) causes high risk of breast and ovarian cancer, and BRCA variation data are important markers for BRCA-related clinical cancer applications. However, comprehensive BRCA variation data are lacking from the Asian population despite its large population size, heterogenous genetic background and diversified living environment across the Asia continent. We performed a systematic study on BRCA variation in Asian population including extensive data mining, standardization, annotation and characterization. We identified 7587 BRCA variants from 685 592 Asian individuals in 40 Asia countries and regions, including 1762 clinically actionable pathogenic variants and 4915 functionally unknown variants (https://genemutation.fhs.um.edu.mo/Asian-BRCA/). We observed the highly ethnic-specific nature of Asian BRCA variants between Asian and non-Asian populations and within Asian populations, highlighting that the current European descendant population-based BRCA data is inadequate to reflect BRCA variation in the Asian population. We also provided archeological evidence for the evolutionary origin and arising time of Asian BRCA variation. We further provided structural-based evidence for the deleterious variants enriched within the functionally unknown Asian BRCA variants. The data from our study provide a current view of BRCA variation in the Asian population and a rich resource to guide clinical applications of BRCA-related cancer for the Asian population.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Female , Humans , Asia/epidemiology , Asian , Asian People/genetics , BRCA1 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Ovarian Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...