Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Lancet Microbe ; 3(10): e744-e752, 2022 10.
Article in English | MEDLINE | ID: mdl-35932764

ABSTRACT

BACKGROUND: Epidemiological studies are necessary to explore the effect of current pneumococcal conjugate vaccines (PCVs) against antibiotic resistance, including the rise of non-vaccine serotypes that are resistant to antibiotics. Hence, epidemiological changes in the antimicrobial pattern of Streptococcus pneumoniae before and during the first year of the COVID-19 pandemic were studied. METHODS: In this national surveillance study, we characterised the antimicrobial susceptibility to a panel of antibiotics in 3017 pneumococcal clinical isolates with reduced susceptibility to penicillin during 2004-20 in Spain. This study covered the early and late PCV7 periods; the early, middle, and late PCV13 periods; and the first year of the COVID-19 pandemic, to evaluate the contribution of PCVs and the pandemic to the emergence of non-vaccine serotypes associated with antibiotic resistance. FINDINGS: Serotypes included in PCV7 and PCV13 showed a decline after the introduction of PCVs in Spain. However, an increase in non-PCV13 serotypes (mainly 11A, 24F, and 23B) that were not susceptible to penicillin promptly appeared. A rise in the proportion of pneumococcal strains with reduced susceptibility to ß-lactams and erythromycin was observed in 2020, coinciding with the emergence of SARS-CoV-2. Cefditoren was the ß-lactam with the lowest minimum inhibitory concentration (MIC)50 or MIC90 values, and had the highest proportion of susceptible strains throughout 2004-20. INTERPRETATION: The increase in non-PCV13 serotypes associated with antibiotic resistance is concerning, especially the increase of penicillin resistance linked to serotypes 11A and 24F. The future use of PCVs with an increasingly broad spectrum (such as PCV20, which includes serotype 11A) could reduce the impact of antibiotic resistance for non-PCV13 serotypes. The use of antibiotics to prevent co-infections in patients with COVID-19 might have affected the increased proportion of pneumococcal-resistant strains. Cefotaxime as a parenteral option, and cefditoren as an oral choice, were the antibiotics with the highest activity against non-PCV20 serotypes. FUNDING: The Spanish Ministry of Science and Innovation and Meiji-Pharma Spain. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Drug Treatment , Pneumococcal Infections , Anti-Bacterial Agents/pharmacology , Cefotaxime/pharmacology , Cephalosporins , Drug Resistance, Bacterial , Erythromycin/pharmacology , Humans , Pandemics/prevention & control , Penicillins/pharmacology , Pneumococcal Infections/drug therapy , Pneumococcal Vaccines/therapeutic use , SARS-CoV-2 , Serogroup , Spain/epidemiology , Streptococcus pneumoniae , Vaccines, Conjugate , beta-Lactams/pharmacology
2.
Sci Rep ; 12(1): 6668, 2022 04 23.
Article in English | MEDLINE | ID: mdl-35461321

ABSTRACT

Biofilm-associated infections are of great concern because they are associated with antibiotic resistance and immune evasion. Co-colonization by Staphylococcus aureus and Streptococcus pneumoniae is possible and a threat in clinical practice. We investigated the interaction between S. aureus and S. pneumoniae in mixed biofilms and tested new antibiofilm therapies with antioxidants N-acetyl-L-cysteine (NAC) and cysteamine (Cys). We developed two in vitro S. aureus-S. pneumoniae mixed biofilms in 96-well polystyrene microtiter plates and we treated in vitro biofilms with Cys and NAC analyzing their effect by CV staining and viable plate counting. S. pneumoniae needed a higher proportion of cells in the inoculum and planktonic culture to reach a similar population rate in the mixed biofilm. We demonstrated the effect of Cys in preventing S. aureus biofilms and S. aureus-S. pneumoniae mixed biofilms. Moreover, administration of 5 mg/ml of NAC nearly eradicated the S. pneumoniae population and killed nearly 94% of MSSA cells and 99% of MRSA cells in the mixed biofilms. The methicillin resistance background did not change the antioxidants effect in S. aureus. These results identify NAC and Cys as promising repurposed drug candidates for the prevention and treatment of mixed biofilms by S. pneumoniae and S. aureus.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Acetylcysteine/pharmacology , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Biofilms , Cysteamine/pharmacology , Methicillin/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus , Streptococcus pneumoniae
SELECTION OF CITATIONS
SEARCH DETAIL
...