Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Nat Prod Res ; : 1-9, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907673

ABSTRACT

Anti-Trypanosoma cruzi activity of compounds from fruits of Schinus terebinthifolius Raddi (pink pepper) were evaluated, using sustainable techniques such as steam distillation (SD) and supercritical fluid extraction (SFE). SD was optimised using a design of experiment and SFE was carried out using supercritical CO2 solvent (300 bar and 60 °C). Results of the anti-T. cruzi activity showed that the essential oil presented high activity (IC50 = 4.5 ± 0.3 µg/mL), whereas the supercritical extract had a moderate effect (IC50 = 19.7 ± 2.9 µg/mL). The differences in the anti-T. cruzi activity can be attributed to the extraction of non-volatile compounds in the SFE, such as moronic and (Z)-masticadienoic acids. In contrast, SD extracted only volatile compounds such as monoterpenes and sesquiterpenes. Therefore, these results suggest that the volatile compounds from pink pepper are involved with the anti-T. cruzi activity.

2.
Fitoterapia ; 177: 106070, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897254

ABSTRACT

The Croton genus (Euphorbiaceae) is recognized as a promising source for identifying bioactive compounds with antiproliferative activity. However, knowledge on the chemical composition and activity of Croton floribundus, Croton echinocarpus, and Croton zehntneri is limited. Thus, this study aimed to investigate the antiproliferative activity of these species on cells derived from tumoral breast, lung, and melanoma cells, and primary fibroblasts derived from human skin. Metabolomic strategies were applied via ultra-performance liquid chromatography coupled with high-resolution mass spectrometry and multivariate statistical analysis to target the main active compound. The C. floribundus leaf extract exhibited the highest activity, with an IC50 value lower than that of the reference drug - temozolomide - in the most responsive cell line - SK-MEL-147 - and in all the evaluated melanoma cell lines (SK-MEL-147, CHL-1 and WM-1366). Four tetrahydrofurofuran lignans were isolated for the first time from the most promising fraction of the C. floribundus extract. According to the metabolomic and multivariate statistical analyses, the isolated lignan epi-yangambin constituted the main antiproliferative compound against SK-MEL-147; furthermore, it exhibited selective antiproliferative activity for this cell line (IC50 = 13.09 µg/mL and selectivity index = 3.82; temozolomide, IC50 = 121.50 µg/mL) due to, at least in part, its ability to inhibit cell cycle progression at G2/M. This is especially relevant considering the high resistance of melanoma cells to available drugs. Thus, epi-yangambin can serve as a prototype for further antiproliferative investigations.

3.
Chem Biodivers ; : e202401247, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896778

ABSTRACT

As part of our continuous research for the discovery of bioactive compounds against Trypanosoma cruzi and Leishmania infantum, the alkaloid (6aS)-dicentrine (1) was oxidized to afford (6aS,6S)- (2) and (6aS,6R)- (3) dicentrine-N-oxides. Evaluation of the cytotoxicity against NCTC cells indicated that 2 and 3 are non-toxic (CC50 > 200 µM) whereas 1 demonstrated CC50 of 52.0 µM. Concerning T. cruzi activity against amastigotes, derivatives 2 and 3 exhibited EC50 values of 9.9 µM (SI > 20.7) and 27.5 µM (SI > 7.3), respectively, but 1 is inactive (EC50 > 100 µM). Otherwise, when tested against L. infantum amastigotes, 1 and 3 exhibited EC50 values of 10.3 µM (SI = 5.0) and 12.7 µM (SI > 15.7), respectively, being 2 inactive (EC50 > 100 µM). Comparing the effects of positive controls benznidazol (EC50 = 6.5 µM and SI > 30.7) and miltefosine (EC50 = 10.2 µM and SI = 15.0), it was observed a selective antiparasitic activity to diastereomers 2 and 3 against T. cruzi and  L. infantum. Considering stereochemical aspects, it was suggested that the configuration of the new stereocenter formed after oxidation of 1 played an important role in the bioactivity against amastigotes of both tested parasites.

4.
Chem Biol Interact ; 396: 111039, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38719171

ABSTRACT

In this work, two neolignans - dehydrodieugenol (1) and dehydrodieugenol B (2) - were isolated from leaves of Ocotea cymbarum (H. B. K.) Ness. (Lauraceae). When tested against two human breast cancer cell lines (MCF7 and MDA-MB-231), compound 1 was inactive (IC50 > 500 µM) whereas compound 2 displayed IC50 values of 169 and 174 µM, respectively. To evaluate, for the first time in the literature, the synergic cytotoxic effects of compounds 1 and 2 with ion Cu2+, both cell lines were incubated with equimolar solutions of these neolignans and Cu(ClO4)2·6H2O. Obtained results revealed no differences in cytotoxicity upon the co-administration of compound 2 and Cu2+. However, the combination of compound 1 and Cu2+ increases the cytotoxicity against MCF7 and MDA-MB-231 cells, with IC50 values of 165 and 204 µM, respectively. The activity of compound 1 and Cu2+ in MCF7 spheroids regarding the causes/effects considering the tumoral microenvironment were accessed using fluorescence staining and imaging by fluorescence microscopy. This analysis enabled the observation of a higher red filter fluorescence intensity in the quiescence zone and the necrotic core, indicating a greater presence of dead cells, suggesting that the combination permeates the spheroid. Finally, using ICP-MS analysis, the intracellular copper disbalance caused by mixing compound 1 and Cu2+ was determined quantitatively. The findings showcased a 50-fold surge in the concentration of Cu2+ compared with untreated cells (p > 0.0001) - 18.7 ng of Cu2+/mg of proteins and 0.37 ng of Cu2+/mg of protein, respectively. Conversely, the concentration of Cu2+ in cells treated with compound 1 was similar to values of the negative control group (0.29 ng of Cu2+/mg of protein). This alteration allowed us to infer that compound 1 combined with Cu2+ induces cell death through copper homeostasis dysregulation.


Subject(s)
Breast Neoplasms , Copper , Humans , Copper/chemistry , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Cell Death/drug effects , Eugenol/analogs & derivatives , Eugenol/pharmacology , Eugenol/chemistry , Plant Leaves/chemistry , MCF-7 Cells , Lignans/pharmacology , Lignans/chemistry
5.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675459

ABSTRACT

Chagas disease is a Neglected Tropical Disease with limited and ineffective therapy. In a search for new anti-trypanosomal compounds, we investigated the potential of the metabolites from the bacteria living in the corals and sediments of the southeastern Brazilian coast. Three corals, Tubastraea coccinea, Mussismilia hispida, Madracis decactis, and sediments yielded 11 bacterial strains that were fully identified by MALDI-ToF/MS or gene sequencing, resulting in six genera-Vibrio, Shewanella, Mesoflavibacter, Halomonas, Bacillus, and Alteromonas. To conduct this study, EtOAc extracts were prepared and tested against Trypanosoma cruzi. The crude extracts showed IC50 values ranging from 15 to 51 µg/mL against the trypomastigotes. The bacterium Mesoflavibacter zeaxanthinifaciens was selected for fractionation, resulting in an active fraction (FII) with IC50 values of 17.7 µg/mL and 23.8 µg/mL against the trypomastigotes and amastigotes, respectively, with neither mammalian cytotoxicity nor hemolytic activity. Using an NMR and ESI-HRMS analysis, the FII revealed the presence of unsaturated iso-type fatty acids. Its lethal action was investigated, leading to a protein spectral profile of the parasite altered after treatment. The FII also induced a rapid permeabilization of the plasma membrane of the parasite, leading to cell death. These findings demonstrate that these unsaturated iso-type fatty acids are possible new hits against T. cruzi.

6.
Fitoterapia ; 175: 105939, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570096

ABSTRACT

Sesquiterpenes are a class of metabolites derived from plant species with immunomodulatory activity. In this study, we evaluated the effects of treatment with costic acid on inflammation, angiogenesis, and fibrosis induced by subcutaneous sponge implants in mice. One sponge disc per animal was aseptically implanted in the dorsal region of the mice and treated daily with costic acid (at concentrations of 0.1, 1, and 10 µg diluted in 10 µL of 0.5% DMSO) or 0.5% DMSO (control group). After 9 days of treatment, the animals were euthanized, and the implants collected for further analysis. Treatment with costic acid resulted in the reduction of the inflammatory parameters evaluated compared to the control group, with a decrease in the levels of inflammatory cytokines and chemokines (TNF, CXCL-1, and CCL2) and in the activity of MPO and NAG enzymes. Costic acid administration altered the process of mast cell degranulation. We also observed a reduction in angiogenic parameters, such as a decrease in the number of blood vessels, the hemoglobin content, and the levels of VEGF and FGF cytokines. Finally, when assessing implant-induced fibrogenesis, we observed a reduction in the levels of the pro-fibrogenic cytokine TGF-ß1, and lower collagen deposition. The results of this study demonstrate, for the first time, the anti-inflammatory, anti-angiogenic, and anti-fibrotic effects of costic acid in an in vivo model of chronic inflammation and reinforce the therapeutic potential of costic acid.


Subject(s)
Collagen , Cytokines , Inflammation , Sesquiterpenes , Animals , Mice , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Collagen/metabolism , Inflammation/drug therapy , Cytokines/metabolism , Male , Fibrosis , Porifera , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Neovascularization, Pathologic/drug therapy , Angiogenesis
7.
Bioorg Chem ; 147: 107408, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678776

ABSTRACT

This study aimed to assess the antiprotozoal efficacy of dicentrine, an aporphine alkaloid isolated from Ocotea puberula, against amastigote forms of Leishmania (L.) infantum. Our findings reveal that dicentrine demonstrated a notable EC50 value of 10.3 µM, comparable to the positive control miltefosine (EC50 of 10.4 µM), while maintaining moderate toxicity to macrophages (CC50 of 51.9 µM). Utilizing an in silico methodology, dicentrine exhibited commendable adherence to various parameters, encompassing lipophilicity, water solubility, molecule size, polarity, and flexibility. Subsequently, we conducted additional investigations to unravel the mechanism of action, employing Langmuir monolayers as models for protozoan cell membranes. Tensiometry analyses unveiled that dicentrine disrupts the thermodynamic and mechanical properties of the monolayer by expanding it to higher areas and increasing the fluidity of the film. The molecular disorder was further corroborated through dilatational rheology and infrared spectroscopy. These results contribute insights into the role of dicentrine as a potential antiprotozoal drug in its interactions with cellular membranes. Beyond elucidating the mechanism of action at the plasma membrane's external surface, our study sheds light on drug-lipid interface interactions, offering implications for drug delivery and other pharmaceutical applications.


Subject(s)
Antiprotozoal Agents , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Structure-Activity Relationship , Cell Membrane/drug effects , Aporphines/pharmacology , Aporphines/chemistry , Dose-Response Relationship, Drug , Lauraceae/chemistry , Molecular Structure , Leishmania infantum/drug effects , Parasitic Sensitivity Tests , Animals
8.
J Toxicol Environ Health B Crit Rev ; 27(4): 131-152, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38480528

ABSTRACT

The aim of this review was to explore the advances of nanoformulations as a strategy to optimize glioblastoma treatment, specifically focusing on targeting and controlling drug delivery systems to the tumor. This review followed the PRISMA recommendations. The studies were selected through a literature search conducted in the electronic databases PubMed Central, Science Direct, Scopus and Web of Science, in April 2023, using the equation descriptors: (nanocapsule OR nanoformulation) AND (glioblastoma). Forty-seven investigations included were published between 2011 and 2023 to assess the application of different nanoformulations to optimize delivery of chemotherapies including temozolomide, carmustine, vincristine or cisplatin previously employed in brain tumor therapy, as well as investigating another 10 drugs. Data demonstrated the possible application of different matrices employed as nanocarriers and utilization of functionalizing agents to improve internalization of chemotherapeutics. Functionalization was developed with the application of peptides, micronutrients/vitamins, antibodies and siRNAs. Finally, this review demonstrated the practical and clinical application of nanocarriers to deliver multiple drugs in glioblastoma models. These nanomodels might ideally be developed using functionalizing ligand agents that preferably act synergistically with the drug these agents carry. The findings showed promising results, making nanoformulations one of the best prospects for innovation and improvement of glioblastoma treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Temozolomide/therapeutic use , Carmustine/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Drug Delivery Systems/methods
9.
Molecules ; 29(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38474522

ABSTRACT

A biobased material, polythymol (PTF), was prepared using thymol, a monoterpene obtained from the essential oil of Thymus vulgaris (Lamiaceae), as a starting material with the aim of enhancing the antimicrobial properties of this natural product. Initially, different processes were performed in order to optimize the reaction conditions to obtain a macromolecule with a high purity and yield. PTF was characterized using different techniques, such as NMR, infrared, UV-Vis, and thermogravimetric analyses. The antimicrobial activity of both PTF and thymol was evaluated against different microorganisms, including S. aureus, E. coli, P. aeruginosa, and C. albicans. The obtained MIC values showed a higher potential for PTF than the monomer thymol-for example, against S. aureus (500 and 31.5 µg·mL-1 for thymol and PTF, respectively). Therefore, the obtained results show that the polymerization of thymol afforded more active biomaterial than the starting monomeric antimicrobial compound (thymol), suggesting that PTF is an important biomaterial.


Subject(s)
Anti-Infective Agents , Oils, Volatile , Thymol/chemistry , Staphylococcus aureus , Escherichia coli , Oils, Volatile/chemistry , Biocompatible Materials , Microbial Sensitivity Tests , Anti-Bacterial Agents/chemistry
10.
Chem Biodivers ; 21(5): e202400547, 2024 May.
Article in English | MEDLINE | ID: mdl-38507773

ABSTRACT

The hexane extract from twigs of Piper truncatum Vell (Piperaceae) displayed activity against Trypanosoma cruzi and was subjected to chromatographic steps to afford six dibenzylbutyrolactolic lignans, being four knowns: cubebin (1), (-)-9α-O-methylcubebin (2), (+)-9ß-O-methylcubebinin (3) and 3,4-dimethoxy-3,4-demethylenedioxycubebin (4) as well as two new, named truncatin A (5) and B (6). Initially, in vitro activity against trypomastigotes was evaluated and compounds 1, 4 and 6 exhibited EC50 values of 41.6, 21.0 and 39.6 µM, respectively. However, when tested against amastigotes, the relevant clinical form in the chronic phase of Chagas disease, compounds 1-6 displayed activities with EC50 values ranging from 1.6 to 13.7 µM. In addition, the mammalian cytotoxicity of compounds 1-6 was evaluated against murine fibroblasts (NCTC). Compounds 2, 3 and 4 exhibited reduced toxicity against NCTC cells (CC50>200 µM), resulting in SI values of>21.9,>14.5 and>121.9, respectively. Compound 4 showed the highest potency with an SI value twice superior to that determined by the standard drug benznidazole (SI>54.6) against the intracellular amastigotes. These data suggest that lignan 4 can be considered a possible scaffold for designing a new drug candidate for Chagas disease.


Subject(s)
Lignans , Piper , Trypanocidal Agents , Trypanosoma cruzi , Lignans/pharmacology , Lignans/chemistry , Lignans/isolation & purification , Piper/chemistry , Animals , Trypanosoma cruzi/drug effects , Mice , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Structure-Activity Relationship , Parasitic Sensitivity Tests , Fibroblasts/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Cell Survival/drug effects
11.
Nat Prod Res ; : 1-7, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538549

ABSTRACT

In the present work, the hexane extract of aerial parts of Baccharis quitensis Kunth. was subjected to chromatographic fractionation to afford two alkyl phenylpropanoids: n-docosyl (E)-p-coumarate (1) and n-tetracosyl (E)-p-coumarate (2) as well as five diterpenes: ent-kaurenoic acid (3), grandifloric acid (4), 15ß-senecioyl-oxy-ent-kaur-16-en-19-oic acid (5), and 15-oxo-ent-kaurenoic acid (6). Using an ex-vivo assay with macrophages infected with Trypanosoma cruzi, compounds 1 and 2 demonstrated high potency against intracellular amastigotes, with EC50 values of 7.5 and 6.9 µM, respectively. Compound 6 revealed a moderate potency against T. cruzi, with an EC50 of 25.6 µM, and compounds 3-5 showed no effectiveness. Additionally, compounds 1-6 compounds presented no toxicity for mammalian cells to the highest tested concentration of 200 µM. Based on potency and the selectivity indexes of 1, 2 and 6, these compounds could be future candidates for optimisation studies for the design of prototypes against Chagas disease.

12.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38324622

ABSTRACT

Liquid chromatography coupled with high-resolution mass spectrometry data-independent acquisition (LC-HRMS/DIA), including MSE, enable comprehensive metabolomics analyses though they pose challenges for data processing with automatic annotation and molecular networking (MN) implementation. This motivated the present proposal, in which we introduce DIA-IntOpenStream, a new integrated workflow combining open-source software to streamline MSE data handling. It provides 'in-house' custom database construction, allows the conversion of raw MSE data to a universal format (.mzML) and leverages open software (MZmine 3 and MS-DIAL) all advantages for confident annotation and effective MN data interpretation. This pipeline significantly enhances the accessibility, reliability and reproducibility of complex MSE/DIA studies, overcoming previous limitations of proprietary software and non-universal MS data formats that restricted integrative analysis. We demonstrate the utility of DIA-IntOpenStream with two independent datasets: dataset 1 consists of new data from 60 plant extracts from the Ocotea genus; dataset 2 is a publicly available actinobacterial extract spiked with authentic standard for detailed comparative analysis with existing methods. This user-friendly pipeline enables broader adoption of cutting-edge MS tools and provides value to the scientific community. Overall, it holds promise for speeding up metabolite discoveries toward a more collaborative and open environment for research.


Subject(s)
Metabolomics , Software , Reproducibility of Results , Workflow , Metabolomics/methods , Mass Spectrometry/methods , Chromatography, Liquid/methods
13.
Chem Biodivers ; 21(3): e202301929, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278761

ABSTRACT

Schistosomiasis is a major neglected disease that imposes a substantial worldwide health burden, affecting approximately 250 million people globally. As praziquantel is the only available drug to treat schistosomiasis, there is a critical need to identify new anthelmintic compounds, particularly from natural sources. To enhance the activity of different natural products, one potential avenue involves its combination with silver nanoparticles (AgNP). Based on this approach, a one-step green method for the in situ preparation of dehydrodieugenol (DHDG) by oxidation coupling reaction using silver and natural eugenol is presented. AgNP formation was confirmed by UV-Vis spectroscopy due to the appearance of the surface plasmon resonance (SPR) band at 430 nm which is characteristic of silver nanoparticles. The nanoparticles were spherical with sizes in the range of 40 to 50 nm. Bioassays demonstrated that the silver nanoparticles loaded with DHDG exhibited significant anthelmintic activity against Schistosoma mansoni adult worms without toxicity to mammalian cells and an in vivo animal model (Caenorhabditis elegans), contributing to the development of new prototypes based on natural products for the treatment of schistosomiasis.


Subject(s)
Anthelmintics , Anti-Infective Agents , Biological Products , Eugenol/analogs & derivatives , Lignans , Metal Nanoparticles , Schistosomiasis , Animals , Humans , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Schistosomiasis/drug therapy , Anti-Infective Agents/therapeutic use , Schistosoma mansoni , Biological Products/therapeutic use , Mammals
14.
Colloids Surf B Biointerfaces ; 234: 113747, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219639

ABSTRACT

This study investigates the interaction between sakuranetin, a versatile pharmaceutical flavonoid, and monolayers composed of unsaturated phospholipids, serving as a surrogate for cell membranes. The phospholipids were 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE). We conducted a series of experiments to comprehensively investigate this interaction, including surface pressure assessments, Brewster angle microscopy (BAM), and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). Our findings unequivocally demonstrate that sakuranetin interacts with these phospholipids, expanding the monomolecular films. Notably, regarding POPC, the presence of sakuranetin led to a reduction in stability and a decline in surface elasticity, which can likely be attributed to intricate molecular rearrangements at the interface. The visual evidence of aggregations in BAM images reinforces the interactions substantiated by PM-IRRAS, highlighting sakuranetin's interaction with the polar and nonpolar regions of POPC. However, it is worth noting that these aggregations do not appear to contribute significantly to the viscosity of the mixed film, and our investigations did not reveal any substantial hysteresis. In contrast, when examining POPE, we observed a minor reduction in thermodynamic stability, indicative of fewer rearrangements within the monolayer. This notion was further reinforced by the limited presence of aggregations in the BAM images. Sakuranetin also increased the rigidity of the lipid monolayer; nevertheless, the monolayer remained predominantly elastic, facilitating easy re-spreading on the surface, especially for the first lipid. PM-IRRAS analysis unveiled interactions between sakuranetin and POPE's polar and nonpolar segments, compellingly explaining the observed monolayer expansion. Taken together, our data suggest that sakuranetin was more effectively incorporated into the monomolecular layer of POPE, indicating that membranes comprised of POPC might exhibit a greater degree of interaction in the presence of this pharmacologically active compound.


Subject(s)
Phospholipids , Phytoalexins , Water , Water/chemistry , Surface Properties , Phospholipids/chemistry , Flavonoids
15.
Nat Prod Res ; 38(6): 1054-1059, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37157912

ABSTRACT

Owing to the potentially harmful adverse effects of current anti-inflammatory drugs, there is a need to identify new alternative substances. Thus, this study aimed to perform a phytochemical analysis of A. polyphylla to identify compounds responsible for its anti-inflammatory activity. Several fractions of the A. polyphylla extract were obtained and evaluated in an ex vivo anti-inflammatory assay using fresh human blood. Among the evaluated fractions, the BH fraction displayed the highest percentage of PGE2 inhibition (74.8%) compared to the reference drugs dexamethasone and indomethacin, demonstrating its excellent potential for anti-inflammatory activity. Astragalin (P1), a known 3-O-glucoside of kaempferol, was isolated from the A. polyphylla extract for the first time. In addition, a new compound (P2) was isolated and identified as the apigenin-3-C-glycosylated flavonoid. Astragalin showed moderate PGE2 activity (48.3%), whereas P2 was not anti-inflammatory. This study contributes to the phytochemical studies of A. polyphylla and confirms its anti-inflammatory potential.


Subject(s)
Acacia , Fabaceae , Humans , Flavonoids/pharmacology , Flavonoids/chemistry , Apigenin/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fabaceae/chemistry , Phytochemicals
16.
Bioorg Chem, v. 147, 107408, jun. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5309

ABSTRACT

This study aimed to assess the antiprotozoal efficacy of dicentrine, an aporphine alkaloid isolated from Ocotea puberula, against amastigote forms of Leishmania (L.) infantum. Our findings reveal that dicentrine demonstrated a notable EC50 value of 10.3 μM, comparable to the positive control miltefosine (EC50 of 10.4 μM), while maintaining moderate toxicity to macrophages (CC50 of 51.9 μM). Utilizing an in silico methodology, dicentrine exhibited commendable adherence to various parameters, encompassing lipophilicity, water solubility, molecule size, polarity, and flexibility. Subsequently, we conducted additional investigations to unravel the mechanism of action, employing Langmuir monolayers as models for protozoan cell membranes. Tensiometry analyses unveiled that dicentrine disrupts the thermodynamic and mechanical properties of the monolayer by expanding it to higher areas and increasing the fluidity of the film. The molecular disorder was further corroborated through dilatational rheology and infrared spectroscopy. These results contribute insights into the role of dicentrine as a potential antiprotozoal drug in its interactions with cellular membranes. Beyond elucidating the mechanism of action at the plasma membrane's external surface, our study sheds light on drug-lipid interface interactions, offering implications for drug delivery and other pharmaceutical applications.

17.
Chem Biodivers, v. 21, n. 5, e202400547, mai. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5306

ABSTRACT

The hexane extract from twigs of Piper truncatum Vell (Piperaceae) displayed activity against Trypanosoma cruzi and was subjected to chromatographic steps to afford six dibenzylbutyrolactolic lignans, being four knowns: cubebin (1), (−)-9α-O-methylcubebin (2), (+)-9β-O-methylcubebinin (3) and 3,4-dimethoxy-3,4-demethylenedioxycubebin (4) as well as two new, named truncatin A (5) and B (6). Initially, in vitro activity against trypomastigotes was evaluated and compounds 1, 4 and 6 exhibited EC50 values of 41.6, 21.0 and 39.6 μM, respectively. However, when tested against amastigotes, the relevant clinical form in the chronic phase of Chagas disease, compounds 1–6 displayed activities with EC50 values ranging from 1.6 to 13.7 μM. In addition, the mammalian cytotoxicity of compounds 1–6 was evaluated against murine fibroblasts (NCTC). Compounds 2, 3 and 4 exhibited reduced toxicity against NCTC cells (CC50>200 μM), resulting in SI values of>21.9,>14.5 and>121.9, respectively. Compound 4 showed the highest potency with an SI value twice superior to that determined by the standard drug benznidazole (SI>54.6) against the intracellular amastigotes. These data suggest that lignan 4 can be considered a possible scaffold for designing a new drug candidate for Chagas disease.

18.
Nat Prod Res, in press, 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5305

ABSTRACT

In the present work, the hexane extract of aerial parts of Baccharis quitensis Kunth. was subjected to chromatographic fractionation to afford two alkyl phenylpropanoids: n-docosyl (E)-p-coumarate (1) and n-tetracosyl (E)-p-coumarate (2) as well as five diterpenes: ent-kaurenoic acid (3), grandifloric acid (4), 15β-senecioyl-oxy-ent-kaur-16-en-19-oic acid (5), and 15-oxo-ent-kaurenoic acid (6). Using an ex-vivo assay with macrophages infected with Trypanosoma cruzi, compounds 1 and 2 demonstrated high potency against intracellular amastigotes, with EC50 values of 7.5 and 6.9 µM, respectively. Compound 6 revealed a moderate potency against T. cruzi, with an EC50 of 25.6 µM, and compounds 3–5 showed no effectiveness. Additionally, compounds 1–6 compounds presented no toxicity for mammalian cells to the highest tested concentration of 200 µM. Based on potency and the selectivity indexes of 1, 2 and 6, these compounds could be future candidates for optimisation studies for the design of prototypes against Chagas disease.

19.
J Inorg Biochem ; 250: 112401, 2024 01.
Article in English | MEDLINE | ID: mdl-37864881

ABSTRACT

Copper(II) complexes are interesting for cancer treatment due to their unique properties, including their redox potential, possible coordination structures with different ligands, the most diverse geometries, and different biomolecule reactivity. The present work synthesized new copper(II) complexes with Schiff-base (imine) type ligands using natural aldehydes such as cinnamaldehyde, vanillin, or ethyl vanillin. The ligands were obtained through the reaction of these aldehydes with the amines 1,3-diaminopropane, 2,2-dimethyl-1,3-propanediamine, or 1,3-diamino-2-propanol and characterized by 1H and 13C NMR, FTIR and ESI-HRMS. The complexation reaction used copper(II) as perchlorate salt, obtaining six new copper(II) complexes. The complexes were characterized using FTIR, UV-vis, elemental analysis, ESI-HRMS, and EPR. In addition, the interaction with the copper(II) complexes and serum albumin was investigated by electronic absorption, showing complex incorporation in the albumin structure. The cytotoxicity of the complexes was evaluated using MTT assay in neuroblastoma cell lines SH-SY5Y, CHP 212, and glioblastoma LN-18, and presented EC50 values between 90 and 300 µM. Based on our results, a square-planar copper(II) complex derived from Schiff-base cinnamaldehyde was found here to possess significant potential as an anti-cancer treatment. Further investigation is required to explore this compound's benefits in cancer co-treatment approaches fully.


Subject(s)
Coordination Complexes , Neuroblastoma , Humans , Copper/chemistry , Magnetic Resonance Spectroscopy , Acrolein/pharmacology , Schiff Bases/chemistry , Coordination Complexes/chemistry , Ligands
20.
J Chem Inf Model ; 64(7): 2565-2576, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38148604

ABSTRACT

American Trypanosomiasis, also known as Chagas disease, is caused by the protozoan Trypanosoma cruzi and exhibits limited options for treatment. Natural products offer various structurally complex metabolites with biological activities, including those with anti-T. cruzi potential. The discovery and development of prototypes based on natural products frequently display multiple phases that could be facilitated by machine learning techniques to provide a fast and efficient method for selecting new hit candidates. Using Random Forest and k-Nearest Neighbors, two models were constructed to predict the biological activity of natural products from plants against intracellular amastigotes of T. cruzi. The diterpenoid andrographolide was identified from a virtual screening as a promising hit compound. Hereafter, it was isolated from Cymbopogon schoenanthus and chemically characterized by spectral data analysis. Andrographolide was evaluated against trypomastigote and amastigote forms of T. cruzi, showing IC50 values of 29.4 and 2.9 µM, respectively, while the standard drug benznidazole displayed IC50 values of 17.7 and 5.0 µM, respectively. Additionally, the isolated compound exhibited a reduced cytotoxicity (CC50 = 92.8 µM) against mammalian cells and afforded a selectivity index (SI) of 32, similar to that of benznidazole (SI = 39). From the in silico analyses, we can conclude that andrographolide fulfills many requirements implemented by DNDi to be a hit compound. Therefore, this work successfully obtained machine learning models capable of predicting the activity of compounds against intracellular forms of T. cruzi.


Subject(s)
Biological Products , Chagas Disease , Cymbopogon , Diterpenes , Nitroimidazoles , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Diterpenes/pharmacology , Diterpenes/metabolism , Biological Products/metabolism , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...