Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Virol J ; 21(1): 121, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816844

ABSTRACT

BACKGROUND: During the pandemic, whole genome sequencing was critical to characterize SARS-CoV-2 for surveillance, clinical and therapeutical purposes. However, low viral loads in specimens often led to suboptimal sequencing, making lineage assignment and phylogenetic analysis difficult. We propose an alternative approach to sequencing these specimens that involves sequencing in triplicate and concatenation of the reads obtained using bioinformatics. This proposal is based on the hypothesis that the uncovered regions in each replicate differ and that concatenation would compensate for these gaps and recover a larger percentage of the sequenced genome. RESULTS: Whole genome sequencing was performed in triplicate on 30 samples with Ct > 32 and the benefit of replicate read concatenation was assessed. After concatenation: i) 28% of samples reached the standard quality coverage threshold (> 90% genome covered > 30x); ii) 39% of samples did not reach the coverage quality thresholds but coverage improved by more than 40%; and iii) SARS-CoV-2 lineage assignment was possible in 68.7% of samples where it had been impaired. CONCLUSIONS: Concatenation of reads from replicate sequencing reactions provides a simple way to access hidden information in the large proportion of SARS-CoV-2-positive specimens eliminated from analysis in standard sequencing schemes. This approach will enhance our potential to rule out involvement in outbreaks, to characterize reinfections and to identify lineages of concern for surveillance or therapeutical purposes.


Subject(s)
COVID-19 , Genome, Viral , Phylogeny , SARS-CoV-2 , Viral Load , Whole Genome Sequencing , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Humans , COVID-19/virology , Viral Load/methods , Genome, Viral/genetics , Whole Genome Sequencing/methods , Computational Biology/methods , RNA, Viral/genetics , High-Throughput Nucleotide Sequencing/methods
2.
Nat Commun ; 15(1): 2717, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548737

ABSTRACT

Mycobacterium abscessus is an opportunistic, extensively drug-resistant non-tuberculous mycobacterium. Few genomic studies consider its diversity in persistent infections. Our aim was to characterize microevolution/reinfection events in persistent infections. Fifty-three sequential isolates from 14 patients were sequenced to determine SNV-based distances, assign resistance mutations and characterize plasmids. Genomic analysis revealed 12 persistent cases (0-13 differential SNVs), one reinfection (15,956 SNVs) and one very complex case (23 sequential isolates over 192 months), in which a first period of persistence (58 months) involving the same genotype 1 was followed by identification of a genotype 2 (76 SNVs) in 6 additional alternating isolates; additionally, ten transient genotypes (88-243 SNVs) were found. A macrolide resistance mutation was identified from the second isolate. Despite high diversity, the genotypes shared a common phylogenetic ancestor and some coexisted in the same specimens. Genomic analysis is required to access the true intra-patient complexity behind persistent infections involving M. abscessus.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mycobacterium Infections, Nontuberculous/microbiology , Macrolides , Phylogeny , Persistent Infection , Reinfection , Drug Resistance, Bacterial/genetics , Genomics , Microbial Sensitivity Tests
4.
Microb Genom ; 10(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38226969

ABSTRACT

Recombination events between Delta and Omicron SARS-CoV-2 lineages highlight the need for co-infection research. Existing studies focus on late-phase co-infections, with few examining earlier pandemic stages. This new study aims to globally identify and characterize co-infections using a bioinformatic pipeline to analyse genomic data from diverse locations and pandemic phases. Among 26988 high-quality SARS-CoV-2 isolates from 11 diverse project databases, we identified 141 potential co-infection cases (0.52%), surpassing previous prevalence estimates. These co-infections were observed throughout the pandemic timeline, with an increase noted after the emergence of the Omicron variant. Co-infections involving the Omicron variant were the most prevalent, potentially influenced by the high level of diversity within this lineage and its impact on the viral landscape. Additionally, we found co-infections involving the pre-Alpha/Alpha lineages, which have been rarely described, raising possibilities of contributing to new lineage emergence through recombination events. The analysis revealed co-infection cases involving both different and the same lineages/sublineages. Our study showcases the potential of our pipeline to leverage valuable information stored in global sequence repositories, advancing our understanding of SARS-CoV-2 co-infections. The prevalence of co-infections highlights the importance of monitoring viral diversity and its potential implications on disease dynamics. Integrating clinical data with genomic findings can further shed light on the clinical implications and outcomes of co-infections.


Subject(s)
COVID-19 , Coinfection , Humans , Coinfection/epidemiology , SARS-CoV-2/genetics , COVID-19/epidemiology , Genomics
5.
Int J Med Microbiol ; 314: 151599, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290400

ABSTRACT

BACKGROUND: SARS-CoV-2 genomic analysis has been key to the provision of valuable data to meet both epidemiological and clinical demands. High-throughput sequencing, generally Illumina-based, has been necessary to ensure the widest coverage in global variant tracking. However, a speedier response is needed for nosocomial outbreak analyses and rapid identification of patients infected by emerging VOCs. An alternative based on nanopore sequencing may be better suited to delivering a faster response when required; however, although there are several studies offering side-by-side comparisons of Illumina and nanopore sequencing, evaluations of the usefulness in the hospital routine of the faster availability of data provided by nanopore are still lacking. RESULTS: We performed a prospective 10-week nanopore-based sequencing in MinION in a routine laboratory setting, including 83 specimens where a faster response time was necessary. The specimens analyzed corresponded to i) international travellers in which lineages were assigned to determine the proper management/special isolation of the patients; ii) nosocomial infections and health-care-worker infections, where SNP-based comparisons were required to rule in/out epidemiological relationships and tailor specific interventions iii) sentinel cases and breakthrough infections to timely report to the Public Health authorities. MinION-based sequencing was compared with the standard procedures, supported on Illumina sequencing; MinION accelerated the delivery of results (anticipating results 1-12 days) and reduced costs per sample by 28€ compared to Illumina, without reducing accuracy in SNP calling. CONCLUSIONS: Parallel integration of Illumina and nanopore sequencing strategies is a suitable solution to ensure both high-throughput and rapid response to cope with accelerating the surveillance demands of SARS-CoV-2 while also maintaining accuracy.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Nanopore Sequencing/methods , Prospective Studies , Genomics/methods
7.
Contact Dermatitis ; 89(6): 471-479, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37667591

ABSTRACT

BACKGROUND: Allergic contact dermatitis from (meth)acrylic monomers (ACDMA) in manicure products is increasing. OBJECTIVE: To evaluate the prognosis, work performance impairment and sequelae of a cohort of beauticians and manicure consumers with ACDMA sensitized from the exposure to manicure products. METHODS: We conducted a telephone survey with patients diagnosed with ACDMA. RESULTS: One hundred and six patients were evaluated, including 75 (70.8%) beauticians and 31 (29.2%) consumers. All were women with a mean age of 39 (19-62). Thirty-seven of 75 beauticians (49.3%) continued to work. Twenty-seven of 106 (25.5%) patients continued to use manicure products with (meth)acrylates regularly. Seventeen of 51 (33.3%) patients who discontinued the exposure described ongoing nail/periungual changes. Nine of 58 (15.5%) patients who required dental restoration, orthodontic or occlusal splint materials recalled reactions from them; and, 25 of 96 (26%) who used sanitary napkins recalled intolerance to them starting after the diagnosis of ACDMA. Fifteen of 25 (60%) discontinued the use of sanitary napkins. CONCLUSION: 49.3% beauticians continued to work; most patients stopped wearing acrylic manicure materials; reactions from dental materials were not uncommon, however, removal of dental materials was never required; and, reactions to sanitary napkins developing after the diagnosis of ACDMA were common most leading to discontinuation of use.


Subject(s)
Dermatitis, Allergic Contact , Dermatitis, Occupational , Humans , Female , Adult , Male , Dermatitis, Allergic Contact/diagnosis , Acrylates/adverse effects , Patch Tests , Prognosis , Dental Materials , Methacrylates/adverse effects
8.
Microbiol Spectr ; : e0107523, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737624

ABSTRACT

During the COVID-19 pandemic, several SARS-CoV-2 variants of concern (VOCs) of particular relevance emerged. Early detection of VOCs entering a country is essential to control spread. The alert triggered by the first suspected case of the Omicron variant in Spain in a traveler arriving from South Africa in November 2021 provided a unique opportunity to evaluate four different methodological strategies tailored to rapid identification of Omicron. The different approaches were designed to respond to the different technical resources available in different settings. First, we used melting probes in RT-PCR to determine the presence of four Omicron signatures (K417N, E484A, P681H, and absence of L452R): three probes showed deviations in temperature (Tm) values relative to the reference codons (E484K-15.8°C, P681H-5.2°C, and L452R-7.2°C) and one maintained the reference value (K417N). The deviation in Tm of P681H suggested the presence of the characteristic Omicron N679K mutation in the probe hybridization region; these data pointed to the presence of Omicron alleles. Second, the presence of 29 of the 33 characteristic single nucleotide polymorphisms (SNPs) in the Omicron variant S-gene was identified by Sanger sequencing of nine amplicons. The final two strategies involved identification of 47 of the 50 non-synonymous and indel mutations attributed to Omicron by rapid nanopore whole genome sequencing (WGS) and by Illumina WGS technology. These strategies enabled us to pre-assign the first Omicron case in Spain with high certainty 2 h after receipt of RNA and to confirm it genomically 3 h later, so that the Public Health authorities could be rapidly notified. IMPORTANCE The study presents different experimental alternatives to identify new variants of concern (VOCs) of SARS-CoV-2 entering a certain population. Early detection of a new VOC is crucial for surveillance and control of spread. The objective is to provide laboratories with tools adapted to their resource capabilities that offer a sufficient level of resolution to rule out, confirm, or pre-assign the presence of a suspected VOC. The study describes four different techniques that were applied simultaneously to the first suspected Omicron case in Spain, highlighting the level of resolution and response time achieved in each case. These techniques are based on the detection of mutations in the S-gene of the virus that can easily adapt to potential emerging variants. The results of the study allow any laboratory to prepare for new alerts of SARS-CoV-2 VOCs.

9.
BMC Microbiol ; 23(1): 190, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460980

ABSTRACT

BACKGROUND: COVID-19 diagnosis lies on the detection of SARS-CoV-2 on nasopharyngeal specimens by RT-PCR. The Xpert-Xpress SARS-CoV-2 assay provides results in less than one hour from specimen reception, which makes it suitable for clinical/epidemiological circumstances that require faster responses. The analysis of a COVID-19 outbreak suspected in the neonatology ward from our institution showed that the Ct values obtained for the targeted genes in the Xpert assay were markedly different within each specimen (N Ct value > 20 cycles above the E Ct value). RESULTS: We identified the mutation C29200T in the N gene as responsible for an impairment in the N gene amplification by performing whole genome sequencing of the specimens involved in the outbreak (Omicron variant). Subsequently, a retrospective analysis of all specimens sequenced in our institution allowed us to identify the same SNP as responsible for similar impairments in another 12 cases (42% of the total cases reported in the literature). Finally, we found that the same SNP emerged in five different lineages independently, throughout almost all the COVID-19 pandemic. CONCLUSIONS: We demonstrated for the first time the impact of this SNP on the Xpert assay, when harbored by new Omicron variants. We extend our observation period throughout almost all the COVID-19 pandemic, offering the most updated observations of this phenomenon, including sequences from the seventh pandemic wave, until now absent in the reports related to this issue. Continuous monitoring of emerging SNPs that could affect the performance of the most commonly used diagnostic tests, is required to redesign the tests to restore their correct performance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Pandemics , Clinical Laboratory Techniques/methods , Retrospective Studies , Sensitivity and Specificity , Mutation
10.
Genome Med ; 15(1): 57, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488638

ABSTRACT

BACKGROUND: SARS-CoV-2 recombinants involving the divergent Delta and Omicron lineages have been described, and one of them, "Kraken" (XBB.1.5), has recently been a matter of concern. Recombination requires the coexistence of two SARS-CoV-2 strains in the same individual. Only a limited number of studies have focused on the identification of co-infections and are restricted to co-infections involving the Delta/Omicron lineages. METHODS: We performed a systematic identification of SARS-CoV-2 co-infections throughout the pandemic (7609 different patients sequenced), not biassed towards the involvement of highly divergent lineages. Through a comprehensive set of validations based on the distribution of allelic frequencies, phylogenetic consistency, re-sequencing, host genetic analysis and contextual epidemiological analysis, these co-infections were robustly assigned. RESULTS: Fourteen (0.18%) co-infections with ≥ 8 heterozygous calls (8-85 HZs) were identified. Co-infections were identified throughout the pandemic and involved an equal proportion of strains from different lineages/sublineages (including pre-Alpha variants, Delta and Omicron) or strains from the same lineage. Co-infected cases were mainly unvaccinated, with mild or asymptomatic clinical presentation, and most were at risk of overexposure associated with the healthcare environment. Strain segregation enabled integration of sequences to clarify nosocomial outbreaks where analysis had been impaired due to co-infection. CONCLUSIONS: Co-infection cases were identified throughout the pandemic, not just in the time periods when highly divergent lineages were co-circulating. Co-infections involving different lineages or strains from the same lineage were occurring in the same proportion. Most cases were mild, did not require medical assistance and were not vaccinated, and a large proportion were associated with the hospital environment.


Subject(s)
COVID-19 , Coinfection , Humans , SARS-CoV-2/genetics , Pandemics , Phylogeny , COVID-19/epidemiology , Genomics
11.
Antimicrob Agents Chemother ; 67(7): e0026623, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37278655

ABSTRACT

The emergence of the Omicron variant of SARS-CoV-2 represented a challenge to the treatment of COVID-19 using monoclonal antibodies. Only Sotrovimab maintained partial activity, allowing it to be used in high-risk patients infected with the Omicron variant. However, reports of resistance mutations to Sotrovimab demand efforts to better understand the intra-patient emergence of Sotrovimab resistance. A retrospective genomic analysis was conducted on respiratory samples from immunocompromised patients infected with SARS-CoV-2 who received Sotrovimab at our hospital between December 2021 and August 2022. The study involved 95 sequential specimens from 22 patients (1 to 12 samples/patient; 3 to 107 days post-infusion; threshold cycle [CT] ≤ 32). Resistance mutations (in P337, E340, K356, and R346) were detected in 68% of cases; the shortest time to detection of a resistance mutation was 5 days after Sotrovimab infusion. The dynamics of resistance acquisition were highly complex, with up to 11 distinct amino acid changes in specimens from the same patient. In two patients, the mutation distribution was compartmentalized in respiratory samples from different sources. This is the first study to examine the acquisition of Sotrovimab resistance in the BA.5 lineage, enabling us to determine the lack of genomic or clinical differences between Sotrovimab resistance in BA.5 relative to that in BA.1/2. Across all Omicron lineages, the acquisition of resistance delayed SARS-CoV-2 clearance (40.67 versus 19.5 days). Close, real-time genomic surveillance of patients receiving Sotrovimab should be mandatory to facilitate early therapeutic interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Retrospective Studies , Genomics , Mutation , Antibodies, Neutralizing
12.
J Chromatogr A ; 1704: 464131, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37315446

ABSTRACT

The typical phenolic profile in grapes is characterized by its complexity both in terms of number of diverse chemical structures and their variation during ripening. Besides, the specific phenolic composition of grapes directly influences the presence of those components in the resulting wine. In this contribution, a new method based on the application of comprehensive two-dimensional liquid chromatography coupled to a diode array detector and tandem mass spectrometry has been developed to obtain the typical phenolic profile of Malbec grapes cultivated in Brazil. Moreover, the method has been demonstrated to be useful to study how the phenolic composition in grapes evolved during a 10-week ripening period. Main detected compounds in grapes and in the wine derived from them were anthocyanins, although a good number of polymeric flavan-3-ols were also tentatively identified, among other compounds. Results show how the amount of anthocyanins present in grapes was increased during ripening up to 5-6 weeks and then decreased towards week 9. The two-dimensional approach applied was demonstrated to be useful for the characterization of the complex phenolic profile of these samples, involving more than 40 different structures and has the potential to be further applied to the study of this important fraction is different grapes and wines systematically.


Subject(s)
Vitis , Wine , Vitis/chemistry , Wine/analysis , Anthocyanins/analysis , Fruit/chemistry , Phenols/analysis , Chromatography, Liquid , Chromatography, High Pressure Liquid
13.
Emerg Infect Dis ; 29(6): 1154-1161, 2023 06.
Article in English | MEDLINE | ID: mdl-37130503

ABSTRACT

Centers for Disease Control and Prevention guidelines consider SARS-CoV-2 reinfection when sequential COVID-19 episodes occur >90 days apart. However, genomic diversity acquired over recent COVID-19 waves could mean previous infection provides insufficient cross-protection. We used genomic analysis to assess the percentage of early reinfections in a sample of 26 patients with 2 COVID-19 episodes separated by 20-45 days. Among sampled patients, 11 (42%) had reinfections involving different SARS-CoV-2 variants or subvariants. Another 4 cases were probable reinfections; 3 involved different strains from the same lineage or sublineage. Host genomic analysis confirmed the 2 sequential specimens belonged to the same patient. Among all reinfections, 36.4% involved non-Omicron, then Omicron lineages. Early reinfections showed no specific clinical patterns; 45% were among unvaccinated or incompletely vaccinated persons, 27% were among persons <18 years of age, and 64% of patients had no risk factors. Time between sequential positive SARS-CoV-2 PCRs to consider reinfection should be re-evaluated.


Subject(s)
COVID-19 , Reinfection , United States , Humans , SARS-CoV-2/genetics , Spain/epidemiology , Genomics , Risk Factors
14.
Clin Case Rep ; 11(5): e7289, 2023 May.
Article in English | MEDLINE | ID: mdl-37143456

ABSTRACT

Repositioning a traumatized tooth involves replacing and stabilizing it. When it is not possible, a method has been developed by an acetate splint. After few weeks, the tooth was aligned and correctly positioned. Abstract: Repositioning a traumatized tooth involves, first, replacing and second stabilizing it. Stabilization, on the other hand, usually requires flexible splints. Occasionally the immediate replacement may be impossible being necessary to use other procedure. When complete replacement is not possible.

15.
Euro Surveill ; 28(12)2023 03.
Article in English | MEDLINE | ID: mdl-36951787

ABSTRACT

IntroductionMycobacterium caprae is a member of the Mycobacterium tuberculosis complex (MTBC) not routinely identified to species level. It lacks specific clinical features of presentation and may therefore not be identified as the causative agent of tuberculosis. Use of whole genome sequencing (WGS) in the investigation of a family microepidemic of tuberculosis in Almería, Spain, unexpectedly identified the involvement of M. caprae.AimWe aimed to evaluate the presence of additional unidentified M. caprae cases and to determine the magnitude of this occurrence.MethodsFirst-line characterisation of the MTBC isolates was done by MIRU-VNTR, followed by WGS. Human and animal M. caprae isolates were integrated in the analysis.ResultsA comprehensive One Health strategy allowed us to (i) detect other 11 M. caprae infections in humans in a period of 18 years, (ii) systematically analyse M. caprae infections on an epidemiologically related goat farm and (iii) geographically expand the study by including 16 M. caprae isolates from other provinces. Integrative genomic analysis of 41 human and animal M. caprae isolates showed a high diversity of strains. The animal isolates' diversity was compatible with long-term infection, and close genomic relationships existed between isolates from goats on the farm and recent cases of M. caprae infection in humans.DiscussionZoonotic circulation of M. caprae strains had gone unnoticed for 18 years. Systematic characterisation of MTBC at species level and/or extended investigation of the possible sources of exposure in all tuberculosis cases would minimise the risk of overlooking similar zoonotic events.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium , One Health , Tuberculosis , Animals , Humans , Spain/epidemiology , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/microbiology , Mycobacterium/genetics , Genomics
16.
Microbiol Spectr ; : e0282622, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36786614

ABSTRACT

Outbreak strains of Mycobacterium tuberculosis are promising candidates as targets in the search for intrinsic determinants of transmissibility, as they are responsible for many cases with sustained transmission; however, the use of low-resolution typing methods and restricted geographical investigations represent flaws in assessing the success of long-lived outbreak strains. We can now address the nature of outbreak strains by combining large genomic data sets and phylodynamic approaches. We retrospectively sequenced the whole genome of representative samples assigned to an outbreak circulating in the Canary Islands (the GC strain) since 1993, which accounts for ~20% of local tuberculosis cases. We selected a panel of specific single nucleotide polymorphism (SNP) markers for an in-silico search for additional outbreak-related sequences within publicly available tuberculosis genomic data. Using this information, we inferred the origin, spread, and epidemiological parameters of the GC strain. Our approach allowed us to accurately trace the historical and more recent dispersion of the GC strain. We provide evidence of a highly successful nature within the Canarian archipelago but limited expansion abroad. Estimation of epidemiological parameters from genomic data disagree with a distinctive biology of the GC strain. With the increasing availability of genomic data allowing for the accurate inference of strain spread and critical epidemiological parameters, we can now revisit the link between Mycobacterium tuberculosis genotypes and transmission, as is routinely carried out for SARS-CoV-2 variants of concern. We demonstrate that social determinants rather than intrinsically higher bacterial transmissibility better explain the success of the GC strain. Importantly, our approach can be used to trace and characterize strains of interest worldwide. IMPORTANCE Infectious disease outbreaks represent a significant problem for public health. Tracing outbreak expansion and understanding the main factors behind emergence and persistence remain critical to effective disease control. Our study allows researchers and public health authorities to use Whole-Genome Sequencing-based methods to trace outbreaks, and shows how available epidemiological information helps to evaluate the factors underpinning outbreak persistence. Taking advantage of all the freely available information placed in public repositories, researchers can accurately establish the expansion of an outbreak beyond original boundaries, and determine the potential risk of a strain to inform health authorities which, in turn, can define target strategies to mitigate expansion and persistence. Finally, we show the need to evaluate strain transmissibility in different geographic contexts to unequivocally associate spread to local or pathogenic factors, an important lesson taken from genomic surveillance of SARS-CoV-2.

18.
Microbiol Spectr ; 11(1): e0419622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36602352

ABSTRACT

Despite the proven value of applying genomic data for epidemiological purposes, commonly used high-throughput sequencing formats are not adapted to the response times required to intervene and finally control outbreaks. In this study, we propose a fast alternative to whole-genome sequencing (WGS) to track relevant microbiological strains: nanopore sequencing of multiple amplicons including strain marker single nucleotide polymorphisms (SNPs). As a proof a concept, we evaluated the performance of our approach to offer a rapid response to the most recent public health global alarm, the monkeypox virus (MPXV) global outbreak. Through a multisequence alignment, a list of 42 SNPs were extracted as signature makers for this outbreak. Twenty primer pairs were designed to amplify in a multiplex PCR the regions including 22 of these SNPs. Amplicon pools were sequenced in a MinION device, and SNPs were called in real time by an in-house bioinformatic pipeline. A total of 120 specimens (95 MPXV-PCR positive, Ct values from 14 to 39) were selected. In 67.37% of the positive subset, all 22 SNPs were called. After excluding low viral load specimens, in 92% of samples ≥11 outbreak SNPs were called. No false positives were observed in any of the 25 negative specimens. The total turnaround time required for this strategy was 5 hours, and the cost per sample was 14 euros. Nanopore sequencing of multiple amplicons harboring signature SNPs escapes the targeting limitations of strain-specific PCRs and offers a powerful alternative to systematic WGS, paving the way to real-time genomic epidemiology and making immediate intervention possible to finally optimize transmission control. IMPORTANCE Nanopore sequencing of multiple amplicons harboring signature single nucleotide polymorphisms (SNPs) escapes the targeting limitations of strain-specific PCRs and offers a powerful alternative to systematic whole-genome analysis, paving the way to real-time genomic epidemiology and making immediate intervention possible to finally optimize transmission control.


Subject(s)
Monkeypox virus , Polymorphism, Single Nucleotide , Monkeypox virus/genetics , High-Throughput Nucleotide Sequencing , Whole Genome Sequencing , Multiplex Polymerase Chain Reaction
19.
Cereb Cortex ; 33(9): 5210-5217, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36255323

ABSTRACT

Triple X syndrome is a sex chromosomal aneuploidy characterized by the presence of a supernumerary X chromosome, resulting in a karyotype of 47,XXX in affected females. It has been associated with a variable cognitive, behavioral, and psychiatric phenotype, but little is known about its effects on brain function. We therefore conducted 7 T resting-state functional magnetic resonance imaging and compared data of 19 adult individuals with 47,XXX and 21 age-matched healthy control women using independent component analysis and dual regression. Additionally, we examined potential relationships between social cognition and social functioning scores, and IQ, and mean functional connectivity values. The 47,XXX group showed significantly increased functional connectivity of the fronto-parietal resting-state network with the right postcentral gyrus. Resting-state functional connectivity (rsFC) variability was not associated with IQ and social cognition and social functioning deficits in the participants with 47,XXX. We thus observed an effect of a supernumerary X chromosome in adult women on fronto-parietal rsFC. These findings provide additional insight into the role of the X chromosome on functional connectivity of the brain. Further research is needed to understand the clinical implications of altered rsFC in 47,XXX.


Subject(s)
Brain Mapping , Brain , Female , Animals , Brain Mapping/methods , Magnetic Resonance Imaging/methods
20.
Enferm Infecc Microbiol Clin (Engl Ed) ; 40(10): 546-549, 2022 12.
Article in English | MEDLINE | ID: mdl-36464472

ABSTRACT

INTRODUCTION: A newly identified SARS-CoV-2 variant, VOC202012/01 originating lineage B.1.1.7, recently emerged in the United Kingdom. The rapid spread in the UK of this new variant has caused other countries to be vigilant. MATERIAL AND METHODS: We based our initial screening of B.1.1.7 on the dropout of the S gene signal in the TaqPath assay, caused by the 69/70 deletion. Subsequently, we confirmed the B.1.1.7 candidates by whole genome sequencing. RESULTS: We describe the first three imported cases of this variant from London to Madrid, subsequent post-arrival household transmission to three relatives, and the two first cases without epidemiological links to UK. One case required hospitalization. In all cases, drop-out of gene S was correctly associated to the B.1.1.7 variant, as all the corresponding sequences carried the 17 lineage-marker mutations. CONCLUSION: The first identifications of the SARS-CoV-2 B.1.1.7 variant in Spain indicate the role of independent introductions from the UK coexisting with post-arrival transmission in the community, since the early steps of this new variant in our country.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spain/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Hospitalization
SELECTION OF CITATIONS
SEARCH DETAIL
...