Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38517259

ABSTRACT

The time- and angle-resolved photoemission spectroscopy (trARPES) allows for direct mapping of the electronic band structure and its dynamic response on femtosecond timescales. Here, we present a new ARPES system, powered by a new fiber-based femtosecond light source in the vacuum ultraviolet range, accessing the complete first Brillouin zone for most materials. We present trARPES data on Au(111), polycrystalline Au, Bi2Se3, and TaTe2, demonstrating an energy resolution of 21 meV with a time resolution of <360 fs, at a high repetition rate of 1 MHz. The system is integrated with an extreme ultraviolet high harmonic generation beamline, enabling an excellent tunability of the time-bandwidth resolution.

2.
Adv Mater ; 35(33): e2304197, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37282751

ABSTRACT

The discovery of a novel long-lived metastable skyrmion phase in the multiferroic insulator Cu2 OSeO3 visualized with Lorentz transmission electron microscopy for magnetic fields below the equilibrium skyrmion pocket is reported. This phase can be accessed by exciting the sample non-adiabatically with near-infrared femtosecond laser pulses and cannot be reached by any conventional field-cooling protocol, referred as a hidden phase. From the strong wavelength dependence of the photocreation process and via spin-dynamics simulations, the magnetoelastic effect is identified as the most likely photocreation mechanism. This effect results in a transient modification of the magnetic free energy landscape extending the equilibrium skyrmion pocket to lower magnetic fields. The evolution of the photoinduced phase is monitored for over 15 min and no decay is found. Because such a time is much longer than the duration of any transient effect induced by a laser pulse in a material, it is assumed that the newly discovered skyrmion state is stable for practical purposes, thus breaking ground for a novel approach to control magnetic state on demand at ultrafast timescales and drastically reducing heat dissipation relevant for next-generation spintronic devices.

3.
ACS Nano ; 17(4): 3657-3665, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36780289

ABSTRACT

Understanding and actively controlling the spatiotemporal dynamics of nonequilibrium electron clouds is fundamental for the design of light and electron sources, high-power electronic devices, and plasma-based applications. However, electron clouds evolve in a complex collective fashion on the nanometer and femtosecond scales, producing electromagnetic screening that renders them inaccessible to existing optical probes. Here, we solve the long-standing challenge of characterizing the evolution of electron clouds generated upon irradiation of metallic structures using an ultrafast transmission electron microscope to record the charged plasma dynamics. Our approach to charge dynamics electron microscopy (CDEM) is based on the simultaneous detection of electron-beam acceleration and broadening with nanometer/femtosecond resolution. By combining experimental results with comprehensive microscopic theory, we provide a deep understanding of this highly out-of-equilibrium regime, including previously inaccessible intricate microscopic mechanisms of electron emission, screening by the metal, and collective cloud dynamics. Beyond the present specific demonstration, the here-introduced CDEM technique grants us access to a wide range of nonequilibrium electrodynamic phenomena involving the ultrafast evolution of bound and free charges on the nanoscale.

4.
ACS Photonics ; 9(10): 3215-3224, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36281329

ABSTRACT

Spatiotemporal electron-beam shaping is a bold frontier of electron microscopy. Over the past decade, shaping methods evolved from static phase plates to low-speed electrostatic and magnetostatic displays. Recently, a swift change of paradigm utilizing light to control free electrons has emerged. Here, we experimentally demonstrate arbitrary transverse modulation of electron beams without complicated electron-optics elements or material nanostructures, but rather using shaped light beams. On-demand spatial modulation of electron wavepackets is obtained via inelastic interaction with transversely shaped ultrafast light fields controlled by an external spatial light modulator. We illustrate this method for the cases of Hermite-Gaussian and Laguerre-Gaussian modulation and discuss their use in enhancing microscope sensitivity. Our approach dramatically widens the range of patterns that can be imprinted on the electron profile and greatly facilitates tailored electron-beam shaping.

5.
Small ; 18(5): e2104287, 2022 02.
Article in English | MEDLINE | ID: mdl-34816572

ABSTRACT

Dion-Jacobson (DJ) iodoplumbates based on 1,4-phenylenedimethanammonium (PDMA) have recently emerged as promising light absorbers for perovskite solar cells. While PDMA is one of the simplest aromatic spacers potentially capable of forming a DJ structure based on (PDMA)An-1 Pbn I3n+1 composition, the crystallographic proof has not been reported so far. Single crystal structure of a DJ phase based on PDMA is presented and high-field solid-state NMR spectroscopy is used to characterize the structure of PDMA-based iodoplumbates prepared as thin films and bulk microcrystalline powders. It is shown that their atomic-level structure does not depend on the method of synthesis and that it is ordered and similar for all iodoplumbate homologues. Moreover, the presence of lower (n) homologues in thin films is identified through UV-Vis spectroscopy, photoluminescence spectroscopy, and X-ray diffraction measurements, complemented by cathodoluminescence mapping. A closer look using cathodoluminescence shows that the micron-scale microstructure corresponds to a mixture of different layered homologues that are well distributed throughout the film and the presence of layer edge states which dominate the emission. This work therefore determines the formation of DJ phases based on PDMA as the spacer cation and reveals their properties on a multi-length scale, which is relevant for their application in optoelectronics.


Subject(s)
Calcium Compounds , Oxides , Powders , Titanium
7.
Nat Commun ; 11(1): 5770, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33188192

ABSTRACT

Characterizing and controlling the out-of-equilibrium state of nanostructured Mott insulators hold great promises for emerging quantum technologies while providing an exciting playground for investigating fundamental physics of strongly-correlated systems. Here, we use two-color near-field ultrafast electron microscopy to photo-induce the insulator-to-metal transition in a single VO2 nanowire and probe the ensuing electronic dynamics with combined nanometer-femtosecond resolution (10-21 m ∙ s). We take advantage of a femtosecond temporal gating of the electron pulse mediated by an infrared laser pulse, and exploit the sensitivity of inelastic electron-light scattering to changes in the material dielectric function. By spatially mapping the near-field dynamics of an individual nanowire of VO2, we observe that ultrafast photo-doping drives the system into a metallic state on a timescale of ~150 fs without yet perturbing the crystalline lattice. Due to the high versatility and sensitivity of the electron probe, our method would allow capturing the electronic dynamics of a wide range of nanoscale materials with ultimate spatiotemporal resolution.

8.
Nat Commun ; 11(1): 4001, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32778661

ABSTRACT

Uranium (U) is a ubiquitous element in the Earth's crust at ~2 ppm. In anoxic environments, soluble hexavalent uranium (U(VI)) is reduced and immobilized. The underlying reduction mechanism is unknown but likely of critical importance to explain the geochemical behavior of U. Here, we tackle the mechanism of reduction of U(VI) by the mixed-valence iron oxide, magnetite. Through high-end spectroscopic and microscopic tools, we demonstrate that the reduction proceeds first through surface-associated U(VI) to form pentavalent U, U(V). U(V) persists on the surface of magnetite and is further reduced to tetravalent UO2 as nanocrystals (~1-2 nm) with random orientations inside nanowires. Through nanoparticle re-orientation and coalescence, the nanowires collapse into ordered UO2 nanoclusters. This work provides evidence for a transient U nanowire structure that may have implications for uranium isotope fractionation as well as for the molecular-scale understanding of nuclear waste temporal evolution and the reductive remediation of uranium contamination.

9.
J Am Chem Soc ; 142(26): 11428-11433, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32391696

ABSTRACT

The employment of 2D perovskites is a promising approach to tackling the stability and voltage issues inherent in perovskite solar cells. It remains unclear, however, whether other perovskites with different dimensionalities have the same effect on efficiency and stability. Here, we report the use of quasi-3D azetidinium lead iodide (AzPbI3) as a secondary layer on top of the primary 3D perovskite film that results in significant improvements in the photovoltaic parameters. Remarkably, the utilization of AzPbI3 leads to a new passivation mechanism due to the presence of surface dipoles resulting in a power conversion efficiency (PCE) of 22.4%. The open-circuit voltage obtained is as high as 1.18 V, which is among the highest reported to date for single junction perovskite solar cells, corresponding to a voltage deficit of 0.37 V for a band gap of 1.55 eV.

10.
Nat Commun ; 10(1): 3648, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31409780

ABSTRACT

We show how the kinetics of a fast and irreversible chemical reaction in a nanocrystalline material at high temperature can be studied using nanosecond electron pulses in an electron microscope. Infrared laser pulses first heat a nanocrystalline oxide layer on a carbon film, then single nanosecond electron pulses allow imaging, electron diffraction and electron energy-loss spectroscopy. This enables us to study the evolution of the morphology, crystallography, and elemental composition of the system with nanosecond resolution. Here, NiO nanocrystals are reduced to elemental nickel within 5 µs after the laser pulse. At high temperatures induced by laser heating, reduction results first in a liquid nickel phase that crystallizes on microsecond timescales. We show that the reaction kinetics in the reduction of nanocrystalline NiO differ from those in bulk materials. The observation of liquid nickel as a transition phase explains why the reaction is first order and occurs at high rates.

11.
Nat Commun ; 9(1): 4482, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30367070

ABSTRACT

Perovskite solar cells present one of the most prominent photovoltaic technologies, yet their stability, scalability, and engineering at the molecular level remain challenging. We demonstrate a concept of multifunctional molecular modulation of scalable and operationally stable perovskite solar cells that exhibit exceptional solar-to-electric power conversion efficiencies. The judiciously designed bifunctional molecular modulator SN links the mercapto-tetrazolium (S) and phenylammonium (N) moieties, which passivate the surface defects, while displaying a structure-directing function through interaction with the perovskite that induces the formation of large grain crystals of high electronic quality of the most thermally stable formamidinium cesium mixed lead iodide perovskite formulation. As a result, we achieve greatly enhanced solar cell performance with efficiencies exceeding 20% for active device areas above 1 cm2 without the use of antisolvents, accompanied by outstanding operational stability under ambient conditions.

12.
Ultramicroscopy ; 188: 41-47, 2018 05.
Article in English | MEDLINE | ID: mdl-29547872

ABSTRACT

We implement a parametric study with single electron pulses having a 7 ns duration to find the optimal conditions for imaging, diffraction, and electron energy-loss spectroscopy (EELS) in the single-shot approach. Photoelectron pulses are generated by illuminating a flat tantalum cathode with 213 nm nanosecond laser pulses in a 200 kV transmission electron microscope (TEM) with thermionic gun and Wehnelt electrode. For the first time, an EEL spectrometer is used to measure the energy distribution of single nanosecond electron pulses which is crucial for understanding the ideal imaging conditions of the single-shot approach. By varying the laser power, the Wehnelt bias, and the condenser lens settings, the optimum TEM operation conditions for the single-shot approach are revealed. Due to space charge and the Boersch effect, the energy width of the pulses under maximized emission conditions is far too high for imaging or spectroscopy. However, by using the Wehnelt electrode as an energy filter, the energy width of the pulses can be reduced to 2 eV, though at the expense of intensity. The first EEL spectra taken with nanosecond electron pulses are shown in this study. With 7 ns pulses, an image resolution of 25 nm is attained. It is shown how the spherical and chromatic aberrations of the objective lens as well as shot noise limit the resolution. We summarize by giving perspectives for improving the single-shot time-resolved approach by using aberration correction.

13.
Adv Healthc Mater ; 6(4)2017 Feb.
Article in English | MEDLINE | ID: mdl-28116855

ABSTRACT

Prostate cancer (PCa) is one of the leading causes of death among men. Low-dose brachytherapy is an increasingly used treatment for PCa, which requires the implantation of tens of radioactive seeds. This treatment causes discomfort; these implants cannot be removed, and they generate image artifacts. In this study, the authors report on intratumoral injections of radioactive gold nanoparticles (Au NPs) as an alternative to seeds. The particles (103 Pd:Pd@Au-PEG and 103 Pd:Pd@198 Au:Au-PEG; 10-14 nm Pd@Au core, 36-48 nm hydrodynamic diameter) are synthesized by a one-pot process and characterized by electron microscopy. Administrated as low volume (2-4 µL) single doses (1.6-1.7 mCi), the particles are strongly retained in PCa xenograft tumors, impacting on their growth rate. After 4 weeks, a tumor volume inhibition of 56% and of 75%, compared to the controls, is observed for 103 Pd:Pd@Au-PEG NPs and 103 Pd:Pd@198 Au:Au-PEG NPs, respectively. Skin necrosis is observed with 198 Au; therefore, Au NPs labeled with 103 Pd only are a more advisable choice. Overall, this is the first study confirming the impact of 103 Pd@Au NPs on tumor growth. This new brachytherapy procedure could allow tunable doses of radioactivity, administered with smaller needles than with the current technologies, and leading to fewer image artifacts.


Subject(s)
Brachytherapy/methods , Gold , Nanoparticles , Palladium , Prostatic Neoplasms/radiotherapy , Animals , Cell Line, Tumor , Gold/chemistry , Gold/pharmacology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Palladium/chemistry , Palladium/pharmacology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays
14.
Nat Commun ; 7: 13156, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27725670

ABSTRACT

Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ∼0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films.

15.
Ultramicroscopy ; 170: 86-95, 2016 11.
Article in English | MEDLINE | ID: mdl-27566048

ABSTRACT

This review article discusses the current and future possibilities for the application of in situ transmission electron microscopy to reveal synthesis pathways and functional mechanisms in complex and nanoscale materials. The findings of a group of scientists, representing academia, government labs and private sector entities (predominantly commercial vendors) during a workshop, held at the Center for Nanoscale Science and Technology- National Institute of Science and Technology (CNST-NIST), are discussed. We provide a comprehensive review of the scientific needs and future instrument and technique developments required to meet them.

16.
Angew Chem Int Ed Engl ; 55(1): 292-6, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26577114

ABSTRACT

We describe a catalytic system composed of rhodium nanoparticles immobilized in a Lewis acidic ionic liquid. The combined system catalyzes the hydrogenation of quinolines, pyridines, benzofurans, and furan to access the corresponding heterocycles, important molecules present in fine chemicals, agrochemicals, and pharmaceuticals. The catalyst is highly selective, acting only on the heteroaromatic ring, and not interfering with other reducible functional groups.

17.
Rev Sci Instrum ; 85(8): 084902, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173298

ABSTRACT

Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns-500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10(2) K/s-10(5) K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

18.
Nat Mater ; 12(8): 697-702, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23685864

ABSTRACT

Coherent twin boundaries (CTBs) are widely described, both theoretically and experimentally, as perfect interfaces that play a significant role in a variety of materials. Although the ability of CTBs in strengthening, maintaining the ductility and minimizing the electron scattering is well documented, most of our understanding of the origin of these properties relies on perfect-interface assumptions. Here we report experiments and simulations demonstrating that as-grown CTBs in nanotwinned copper are inherently defective with kink-like steps and curvature, and that these imperfections consist of incoherent segments and partial dislocations. We further show that these defects play a crucial role in the deformation mechanisms and mechanical behaviour of nanotwinned copper. Our findings offer a view of the structure of CTBs that is largely different from that in the literature, and underscore the significance of imperfections in nanotwin-strengthened materials.

19.
Langmuir ; 28(49): 17168-75, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23145476

ABSTRACT

Using pump-probe electron microscopy techniques, the dewetting of thin nickel films exposed to a pulsed nanosecond laser was monitored at tens of nanometers spatial and nanosecond time scales to provide insight into the liquid-phase assembly dynamics. Thickness-dependent and correlated time and length scales indicate that a spinodal instability drives the assembly process. Measured lifetimes of the liquid metal are consistent with finite-difference simulations of the laser-irradiated film and are consistent with estimated and observed spinodal time scales. These results can be used to design improved synthesis and assembly routes toward achieving advanced functional nanomaterials and devices.

20.
Micron ; 43(11): 1108-20, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22595460

ABSTRACT

The growing field of ultrafast materials science, aimed at exploring short-lived transient processes in materials on the microsecond to femtosecond timescales, has spawned the development of time-resolved, in situ techniques in electron microscopy capable of capturing these events. This article gives a brief overview of two principal approaches that have emerged in the past decade: the stroboscopic ultrafast electron microscope and the nanosecond-time-resolved single-shot instrument. The high time resolution is garnered through the use of advanced pulsed laser systems and a pump-probe experimental platforms using laser-driven photoemission processes to generate time-correlated electron probe pulses synchronized with laser-driven events in the specimen. Each technique has its advantages and limitations and thus is complementary in terms of the materials systems and processes that they can investigate. The stroboscopic approach can achieve atomic resolution and sub-picosecond time resolution for capturing transient events, though it is limited to highly repeatable (>10(6) cycles) materials processes, e.g., optically driven electronic phase transitions that must reset to the material's ground state within the repetition rate of the femtosecond laser. The single-shot approach can explore irreversible events in materials, but the spatial resolution is limited by electron source brightness and electron-electron interactions at nanosecond temporal resolutions and higher. The first part of the article will explain basic operating principles of the stroboscopic approach and briefly review recent applications of this technique. As the authors have pursued the development of the single-shot approach, the latter part of the review discusses its instrumentation design in detail and presents examples of materials science studies and the near-term instrumentation developments of this technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...