Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(21)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34771399

ABSTRACT

Different percentages of an elastomeric phase of styrene-ethylene-butylene-styrene (SEBS) were added to a polystyrene (PS) matrix to evaluate its nucleating effect in PS foams. It has been demonstrated that a minimum quantity of SEBS produces a high nucleation effect on the cellular materials that are produced. In particular, the results show that by adding 2% of SEBS, it is possible to reduce the cell size by 10 times while maintaining the density and open cell content of the foamed materials. The influence of this polymeric phase on the glass transition temperature (Tg) and the shear and extensional rheological properties has been studied to understand the foaming behavior. The results indicate a slight increase in the Tg and a decrease of the shear viscosity, extensional viscosity, and strain hardening coefficient as the percentage of SEBS increases. Consequently, an increase in the density and a deterioration of the cellular structure is detected for SEBS amounts higher than 3%.

2.
Polymers (Basel) ; 10(3)2018 Feb 28.
Article in English | MEDLINE | ID: mdl-30966284

ABSTRACT

The aim of this study is to propose and explore a novel approach for the production of cellular lightweight natural fibre, nonwoven, fabric-reinforced biocomposites by means of gas dissolution foaming from composite precursors of polyhydroxybutyrate-based matrix and flax fabric reinforcement. The main challenge is the development of a regular cellular structure in the polymeric matrix to reach a weight reduction while keeping a good fibre-matrix stress transfer and adhesion. The viability of the process is evaluated through the analysis of the cellular structure and morphology of the composites. The effect of matrix modification, nonwoven treatment, expansion temperature, and expansion pressure on the density and cellular structure of the cellular composites is evaluated. It was found that the nonwoven fabric plays a key role in the formation of a uniform cellular morphology, although limiting the maximum expansion ratio of the composites. Cellular composites with a significant reduction of weight (relative densities in the range 0.4⁻0.5) were successfully obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...