Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Kidney Int ; 70(8): 1423-31, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16941028

ABSTRACT

Congenital nephrotic syndrome of the Finnish type (NPHS1) is a rare genetic disease caused by mutations in the NPHS1 gene encoding a major podocyte slit-diaphragm protein, nephrin. Patients with NPHS1 have severe nephrotic syndrome from birth and develop renal fibrosis in early childhood. In this work, we studied the development of glomerular sclerosis in kidneys removed from 4- to 44-month-old NPHS1 patients. The pathological lesions and expression of glomerular cell markers were studied in nephrectomized NPHS1 and control kidneys using light and electron microscopy and immunohistochemistry. An analysis of 1528 glomeruli from 20 patients revealed progressive mesangial sclerosis and capillary obliteration. Although few inflammatory cells were detected in the mesangial area, paraglomerular inflammation and fibrosis was common. The podocytes showed severe ultrastructural changes and hypertrophy with the upregulation of cyclins A and D1. Podocyte proliferation, however, was rare. Apoptosis was hardly detected and the expression of antiapoptotic B-cell lymphoma-2 and proapoptotic p53 were comparable to controls. Moderate amounts of podocytes were secreted into the urine of NPHS1 patients. Shrinkage of the glomerular tuft was common, whereas occlusion of tubular opening or protrusion of the glomerular tuft into subepithelial space or through the Bowman's capsule were not detected. The results indicate that, in NPHS1 kidneys, the damaged podocytes induce progressive mesangial expansion and capillary obliteration. Podocyte depletion, glomerular tuft adhesion, and misdirected filtration, however, seem to play a minor role in the nephron destruction.


Subject(s)
Kidney Glomerulus/pathology , Nephrotic Syndrome/congenital , Nephrotic Syndrome/pathology , Apoptosis , Cell Proliferation , Child, Preschool , Disease Progression , Epithelium/pathology , Glomerular Mesangium/blood supply , Glomerular Mesangium/pathology , Humans , Hypertrophy , Infant , Kidney Glomerulus/blood supply , Membrane Proteins/genetics , Mutation , Nephrotic Syndrome/genetics , Podocytes/pathology , Sclerosis
2.
Atherosclerosis ; 133(2): 245-53, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9298685

ABSTRACT

Familial combined hyperlipidaemia (FCHL) is one of the most common hereditary disorders predisposing to early coronary death. The affected family members have elevations of serum total cholesterol, triglycerides or both. Despite intensive research efforts the genetic and metabolic defects underlying this complex disorder are still unknown. To dissect the metabolism and genetics of FCHL the phenotype of an individual must be precisely defined. We assessed the influence of different diagnostic criteria on the phenotype definition and studied factors affecting the phenotype expression in 16 large Finnish families (n = 255) with FCHL. The fractile cut-points used to define abnormal lipid values had a profound influence on the diagnosis of FCHL. If the 90th percentile cut-point was used, approximately 45% of the family members were affected, in concord with the presumed dominant mode of transmission for FCHL. If the 95th percentile was used only 22% of study subjects were affected. To characterize the metabolic differences or similarities between the different lipid phenotypes, we determined very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), low density lipoprotein (LDL) and high density lipoprotein (HDL) particles separated by ultracentrifugation. In linkage analysis no single ultracentrifugation variable could discriminate reliably affected family members from non-affected family members. Our data emphasizes the need for re-evaluation of FCHL diagnostic criteria. Preferably, the diagnosis should be based on a single, reliable metabolic marker.


Subject(s)
Hyperlipidemia, Familial Combined/genetics , Phenotype , Adolescent , Adult , Age Factors , Anthropometry/methods , Apolipoproteins B/blood , Child , Child, Preschool , Cholesterol/blood , Female , Finland/epidemiology , Gene Expression , Humans , Hyperlipidemia, Familial Combined/diagnosis , Hyperlipidemia, Familial Combined/epidemiology , Life Style , Lipids/blood , Lipids/genetics , Male , Middle Aged , Triglycerides/blood
3.
Arterioscler Thromb Vasc Biol ; 17(5): 841-50, 1997 May.
Article in English | MEDLINE | ID: mdl-9157946

ABSTRACT

Familial combined hyperlipidemia (FCHL) is characterized by different lipid phenotypes (IIa, IIb, IV) and elevated apolipoprotein B (apo B) levels in affected family members. Despite intensive research, the genes involved in the expression of this complex disorder have not been identified, probably because of problems associated with phenotype definition, unknown mode of inheritance, and most probably genetic heterogeneity. To explore the genetics of FCHL in the genetically homogeneous Finnish population, we collected 14 well-documented Finnish pedigrees with premature coronary heart disease and FCHL-like dyslipidemia. The lipolytic enzymes lipoprotein lipase (LPL), hepatic lipase (HL), and hormone-sensitive lipase (HSL) were selected as initial candidate genes because of their central roles in apo B and triglyceride metabolism. On the basis of the pedigree structures, a dominant mode of inheritance was adopted for linkage analyses, and serum total cholesterol and/or triglyceride levels exceeding the 90th percentile level were set as diagnostic criteria (criterion 1). In pairwise linkage analyses with intragenic markers, no evidence for linkage was found. Instead, the significantly negative LOD scores suggested exclusion of all three loci for single major gene effect. LOD scores were -14.63, -5.03, and -5.70 for the three LPL polymorphisms (theta=0.00); -9.40, -6.30, and -4.74 for the three HL polymorphisms (theta=0.00); and -15.29 for the HSL polymorphism (theta=0.00). The results were very similar when apo B levels over the 90th percentile were used as criteria for affected status (criterion 2). Also, when linkage calculations were carried out using an intermediate or recessive mode of inheritance, the results of pairwise linkage analysis remained negative. Furthermore, when haplotypes were constructed from multiple polymorphisms of the LPL and HL genes, no segregation with the FCHL phenotype could be observed in the 14 Finnish families. Data obtained by the affected sib-pair method supported these findings, suggesting that the LPL, HL, or HSL genes do not represent major loci influencing the expression of the FCHL phenotype.


Subject(s)
Genetic Linkage , Hyperlipidemia, Familial Combined/genetics , Lipase/genetics , Lipolysis , Lipoprotein Lipase/genetics , Liver/enzymology , Sterol Esterase/genetics , Adult , Codon , Female , Finland , Humans , Lod Score , Male , Middle Aged , Pedigree , Polymorphism, Genetic , Prospective Studies , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...