Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 102(10): e209297, 2024 May.
Article in English | MEDLINE | ID: mdl-38696733

ABSTRACT

BACKGROUND AND OBJECTIVES: Among infectious etiologies of encephalitis, herpes simplex virus type 1 (HSV-1) is most common, accounting for ∼15%-40% of adult encephalitis diagnoses. We aim to investigate the association between immune status and HSV encephalitis (HSVE). Using a US Medicaid database of 75.6 million persons, we evaluated the association between HSVE and autoimmune conditions, exposure to immunosuppressive and immunomodulatory medications, and other medical comorbidities. METHODS: We used the US Medicaid Analytic eXtract data between 2007 and 2010 from the 29 most populated American states. We first examined the crude incidence of HSVE in the population. We then age and sex-matched adult cases of HSVE with a sufficient enrollment period (12 months before HSVE diagnosis) to a larger control population without HSVE. In a case-control analysis, we examined the association between HSVE and exposure to both autoimmune disease and immunosuppressive/immunomodulatory medications. Analyses were conducted with conditional logistic regression progressively adjusting for sociodemographic factors, Charlson Comorbidity Index, and non-autoimmune comorbidities. RESULTS: Incidence of HSVE was ∼3.01 per 105 person-years among adults. A total of 951 HSVE cases and 95,100 age and sex-matched controls were compared. The HSVE population had higher rates of medical comorbidities than the control population. The association of HSVE and autoimmune conditions was strong (adjusted odds ratio (OR) 2.6; 95% CI 2.2-3.2). The association of HSVE and immunomodulating medications had an OR of 2.2 (CI 1.9-2.6), also after covariate adjustment. When both exposures were included in regression models, the associations remained robust: OR 2.3 (CI 1.9-2.7) for autoimmune disease and 2.0 (CI 1.7-2.3) for immunosuppressive and immunomodulatory medications. DISCUSSION: In a large, national population, HSVE is strongly associated with preexisting autoimmune disease and exposure to immunosuppressive and immunomodulatory medications. The role of antecedent immune-related dysregulation may have been underestimated to date.


Subject(s)
Autoimmune Diseases , Encephalitis, Herpes Simplex , Immunomodulating Agents , Humans , Female , Male , Encephalitis, Herpes Simplex/epidemiology , Encephalitis, Herpes Simplex/immunology , Autoimmune Diseases/epidemiology , Autoimmune Diseases/immunology , Adult , Middle Aged , United States/epidemiology , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/adverse effects , Case-Control Studies , Incidence , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Young Adult , Medicaid , Aged , Adolescent , Comorbidity
2.
Mol Ther ; 28(10): 2150-2160, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32592687

ABSTRACT

The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme ß-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Genetic Vectors/genetics , Sandhoff Disease/therapy , Animals , Disease Management , Disease Models, Animal , G(M2) Ganglioside/metabolism , Gene Expression , Genetic Predisposition to Disease , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Mice , Mutation , Sandhoff Disease/genetics , Tay-Sachs Disease/genetics , Tay-Sachs Disease/metabolism , Tay-Sachs Disease/therapy , Transgenes , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...