Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(7): 1825-1832, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35171617

ABSTRACT

Cyanine molecules are important phototheranostic compounds given their high fluorescence yield in the near-infrared region of the spectrum. We report on the frequency and time-resolved spectroscopy of the S2 state of IR806, which demonstrates enhanced emission upon binding to the hydrophobic pocket of human serum albumin (HSA). From excitation-emission matrix spectra and electronic structure calculations, we identify the emission as one associated with a state having the polymethine chain twisted out of plane by 103°. In addition, we find that this configuration is significantly stabilized as the concentration of HSA increases. Spectroscopic changes associated with the S1 and S2 states of IR806 as a function of HSA concentration, as well as anisotropy measurements, confirm the formation of HSA dimers at concentrations greater than 10 µM. These findings imply that the longer-lived S2 state configuration can lead to more efficient phototherapy agents, and cyanine S2 spectroscopy may be a useful tool to determine the oligomerization state of HSA.


Subject(s)
Carbocyanines/chemistry , Serum Albumin, Human/chemistry , Binding Sites , Carbocyanines/metabolism , Density Functional Theory , Dimerization , Humans , Molecular Docking Simulation , Protein Binding , Serum Albumin, Human/metabolism , Spectrometry, Fluorescence , Thermodynamics
2.
J Phys Chem A ; 125(45): 9770-9784, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34747598

ABSTRACT

We report on the changes in the dual fluorescence of two cyanine dyes IR144 and IR140 as a function of viscosity and probe their internal conversion dynamics from S2 to S1 via their dependence on a femtosecond laser pulse chirp. Steady-state and time-resolved measurements performed in methanol, ethanol, propanol, ethylene glycol, and glycerol solutions are presented. Quantum calculations reveal the presence of three excited states responsible for the experimental observations. Above the first excited state, we find an excited state, which we designate as S1', that relaxes to the S1 minimum, and we find that the S2 state has two stable configurations. Chirp-dependence measurements, aided by numerical simulations, reveal how internal conversion from S2 to S1 depends on solvent viscosity and pulse duration. By combining solvent viscosity, transform-limited pulses, and chirped pulses, we obtain an overall change in the S2/S1 population ratio of a factor of 86 and 55 for IR144 and IR140, respectively. The increase in the S2/S1 ratio is explained by a two-photon transition to a higher excited state. The ability to maximize the population of higher excited states by delaying or bypassing nonradiative relaxation may lead to the increased efficiency of photochemical processes.

3.
J Chem Phys ; 153(22): 224301, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317305

ABSTRACT

Two-photon excitation (TPE) is an attractive means for controlling chemistry in both space and time. Since isoenergetic one- and two-photon excitations (OPE and TPE) in non-centrosymmetric molecules are allowed to reach the same excited state, it is usually assumed that they produce similar excited-state reactivity. We compare the solvent-to-solute excited-state proton transfer of the super photobase FR0-SB following isoenergetic OPE and TPE. We find up to 62% increased reactivity following TPE compared to OPE. From steady-state spectroscopy, we rule out the involvement of different excited states and find that OPE and TPE spectra are identical in non-polar solvents but not in polar ones. We propose that differences in the matrix elements that contribute to the two-photon absorption cross sections lead to the observed enhanced isoenergetic reactivity, consistent with the predictions of our high-level coupled-cluster-based computational protocol. We find that polar solvent configurations favor greater dipole moment change between ground and excited states, which enters the probability for TPE as the absolute value squared. This, in turn, causes a difference in the Franck-Condon region reached via TPE compared to OPE. We conclude that a new method has been found for controlling chemical reactivity via the matrix elements that affect two-photon cross sections, which may be of great utility for spatial and temporal precision chemistry.

4.
Phys Chem Chem Phys ; 22(35): 19613-19622, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32936138

ABSTRACT

The significance of solvent structural factors in the excited-state proton transfer (ESPT) reactions of Schiff bases with alcohols is reported here. We use the super photobase FR0-SB and a series of primary, secondary, and tertiary alcohol solvents to illustrate the steric issues associated with solvent to photobase proton transfer. Steady-state and time-resolved fluorescence data show that ESPT occurs readily for primary alcohols, with a probability proportional to the relative -OH concentration. For secondary alcohols, ESPT is greatly diminished, consistent with the barrier heights obtained using quantum chemistry calculations. ESPT is not observed in the tertiary alcohol. We explain ESPT using a model involving an intermediate hydrogen-bonded complex where the proton is "shared" by the Schiff base and the alcohol. The formation of this complex depends on the ability of the alcohol solvent to achieve spatial proximity to and alignment with the FR0-SB* imine lone pair stabilized by the solvent environment.

5.
J Phys Chem B ; 123(40): 8448-8456, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31532676

ABSTRACT

We report on the motional and proton transfer dynamics of the super photobase FR0-SB in the series of normal alcohols C1 (methanol) through C8 (n-octanol) and ethylene glycol. Steady-state and time-resolved fluorescence data reveal that the proton abstraction dynamics of excited FR0-SB depend on the identity of the solvent and that the transfer of the proton from solvent to FR0-SB*, forming FR0-HSB+*, fundamentally alters the nature of interactions between the excited molecule and its surroundings. In its unprotonated state, solvent interactions with FR0-SB* are consistent with slip limit behavior, and in its protonated form, intermolecular interactions are consistent with a much stronger interaction of FR0-HSB+* with the deprotonated solvent RO-. We understand the excited-state population dynamics in the context of a kinetic model involving a transition state wherein FR0-HSB+* is still bound to the negatively charged alkoxide, prior to solvation of the two charged species. Data acquired in ethylene glycol confirm the hypothesis that the rotational diffusion dynamics of FR0-SB* are largely mediated by solvent viscosity while proton transfer dynamics are mediated by the lifetime of the transition state. Taken collectively, our results demonstrate that FR0-SB* extracts solvent protons efficiently and in a predictable manner, consistent with a ca. 3-fold increase in dipole moment upon photoexcitation as determined by ab initio calculations based on the equation-of-motion coupled-cluster theory.


Subject(s)
Alcohols/chemistry , Protons , Solvents/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Molecular , Molecular Conformation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...