Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 630: 122433, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36436745

ABSTRACT

MCL-1, an anti-apoptotic member of the BCL-2 protein family, is overexpressed in many types of cancer and contributes to chemotherapy resistance. The drimane derivative NA1-115-7 is a natural compound isolated from Zygogynum pancheri that can be considered as a very promising lead for treating MCL-1-dependent hematological malignancies. As this drug suffers from low stability in acidic conditions and poor aqueous solubility, we evaluated the potential oral use of NA1-115-7 by encapsulating it in lipid nanoemulsions (NA-NEs) prepared by spontaneous emulsification. NA-NEs showed a particle size of 41.9 ± 2.2 nm, PDI of 0.131 ± 0.016, zeta potential of -5.8 ± 3.4 mV, encapsulation efficiency of approximately 100 % at a concentration of 24 mM. The stability of NA-1-115-7 was sixfold higher than that of the unencapsulated drug in simulated gastric fluid. NA-NEs significantly restored apoptosis and halved the effective doses of NA1-115-7 on BL2, a Burkitt lymphoma cell line, without toxicity in normal cells. Such a drug-delivery system appears to be particularly interesting for the oral administration of NA1-115-7, as it improves its solubility and stability, as well as efficacy, by reducing the therapeutic dose, making it possible to further consider in-vivo studies of this promising drug in BL2 xenografted mice.


Subject(s)
Antineoplastic Agents , Lymphoproliferative Disorders , Animals , Mice , Administration, Oral , Antineoplastic Agents/pharmacology , Emulsions , Myeloid Cell Leukemia Sequence 1 Protein , Particle Size , Nanostructures
2.
Appl Spectrosc ; 59(10): 1242-7, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16274537

ABSTRACT

When assessing historic textiles and considering appropriate conservation, display, and storage strategies, characterizing the physical condition of the textiles is essential. Our work has concentrated on developing nondestructive or micro-destructive methodologies that will permit this. Previously, we have demonstrated a correlation between the physical deterioration of unweighted and "pink" tin (IV) chloride weighted silk and certain measurable spectroscopic and chromatographic signatures, derived from polarized Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy (Pol-ATR) and high-performance liquid chromatography (HPLC) microsampling analyses. The application of the Pol-ATR technique to aged silk characterization has now been extended to include a more comprehensive range of weighting methods and aging regimes. This was intended to replicate the full spectrum of states of deterioration observed in silk textiles, from pristine to heavily degraded. Breaking strength was employed as a measure of the physical integrity of the fibers, and, as expected, decreased with aging. An orientational crystallinity parameter, reflecting the microstructural ordering of the fibroin polymer within the fibers, was derived from the Pol-ATR spectra. A good correlation was observed between the breaking strength of the variety of fibers and this parameter. This suggests that the physical state of historic silk fabrics might be adequately characterized for conservation purposes by such indirect micromethodology.


Subject(s)
Silk/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Textile Industry/history , Animals , Bombyx/chemistry , Fibroins/chemistry , History, Medieval , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...