Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 94(3): 033510, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012781

ABSTRACT

The Particle Time of Flight (PTOF) diagnostic is a chemical vapor deposition diamond detector used for measuring multiple nuclear bang times at the National Ignition Facility. Due to the non-trivial, polycrystalline structure of these detectors, individual characterization and measurement are required to interrogate the sensitivity and behavior of charge carriers. In this paper, a process is developed for determining the x-ray sensitivity of PTOF detectors and relating it to the intrinsic properties of the detector. We demonstrate that the diamond sample measured has a significant non-homogeneity in its properties, with the charge collection well described by a linear model ax + b, where a = 0.63 ± 0.16 V-1 mm-1 and b = 0.00 ± 0.04 V-1. We also use this method to confirm an electron to hole mobility ratio of 1.5 ± 1.0 and an effective bandgap of 1.8 eV rather than the theoretical 5.5 eV, leading to a large sensitivity increase.

2.
Phys Rev E ; 106(5): L053201, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559377

ABSTRACT

We report on measurements of the ion-electron energy-transfer cross section utilizing low-velocity ion stopping in high-energy-density plasmas at the OMEGA laser facility. These measurements utilize a technique that leverages the close relationship between low-velocity ion stopping and ion-electron equilibration. Shock-driven implosions of capsules filled with D^{3}He gas doped with a trace amount of argon are used to generate densities and temperatures in ranges from 1×10^{23} to 2×10^{24} cm^{-3} and from 1.4 to 2.5 keV, respectively. The energy loss of 1-MeV DD tritons and 3.7-MeV D^{3}He alphas that have velocities lower than the average velocity of the thermal electrons is measured. The energy loss of these ions is used to determine the ion-electron energy-transfer cross section, which is found to be in excellent agreement with quantum-mechanical calculations in the first Born approximation. This result provides an experimental constraint on ion-electron energy transfer in high-energy-density plasmas, which impacts the modeling of alpha heating in inertial confinement fusion implosions, magnetic-field advection in stellar atmospheres, and energy balance in supernova shocks.

3.
Phys Rev Lett ; 129(19): 195002, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36399755

ABSTRACT

The application of an external 26 Tesla axial magnetic field to a D_{2} gas-filled capsule indirectly driven on the National Ignition Facility is observed to increase the ion temperature by 40% and the neutron yield by a factor of 3.2 in a hot spot with areal density and temperature approaching what is required for fusion ignition [1]. The improvements are determined from energy spectral measurements of the 2.45 MeV neutrons from the D(d,n)^{3}He reaction, and the compressed central core B field is estimated to be ∼4.9 kT using the 14.1 MeV secondary neutrons from the D(T,n)^{4}He reactions. The experiments use a 30 kV pulsed-power system to deliver a ∼3 µs current pulse to a solenoidal coil wrapped around a novel high-electrical-resistivity AuTa_{4} hohlraum. Radiation magnetohydrodynamic simulations are consistent with the experiment.

4.
Rev Sci Instrum ; 93(8): 083513, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36050054

ABSTRACT

Recent progress at the National Ignition Facility (NIF), with neutron yields of order 1 × 1017, places new constraints on diagnostics used to characterize implosion performance. The Magnetic Recoil neutron Spectrometer (MRS), which is routinely used to measure yield, ion temperature (Tion), and down-scatter ratio (dsr), has been adapted to allow measurements of dsr up to 5 × 1017, and yield and Tion up to 2 × 1018 in the near term with new data processing techniques and conversion foil solutions. This paper presents a solution for extending MRS operation up to a yield of 2 × 1019 (60 MJ) by moving the spectrometer outside of the NIF shield wall. This will not only enhance the upper yield limit by 10× but also improve signal-to-background by 5×.

5.
Phys Rev Lett ; 128(18): 185002, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35594117

ABSTRACT

Evolution of the hot spot plasma conditions was measured using high-resolution x-ray spectroscopy at the National Ignition Facility. The capsules were filled with DD gas with trace levels of Kr and had either a high-density-carbon (HDC) ablator or a tungsten (W)-doped HDC ablator. Time-resolved measurement of the Kr Heß spectra, absolutely calibrated by a simultaneous time-integrated measurement, allows inference of the electron density and temperature through observing Stark broadening and the relative intensities of dielectronic satellites. By matching the calculated hot spot emission using a collisional-radiative code to experimental observations, the hot spot size and areal density are determined. These advanced spectroscopy techniques further reveal the effect of W dopant in the ablator on the hot spot parameters for their improved implosion performance.

6.
Rev Sci Instrum ; 92(8): 083506, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34470381

ABSTRACT

New designs and a new analysis technique have been developed for an existing compact charged-particle spectrometer on the NIF and OMEGA. The new analysis technique extends the capabilities of this diagnostic to measure arbitrarily shaped ion spectra down to 1 MeV with yields as low as 106. Three different designs are provided optimized for the measurement of DD protons, T3He deuterons, and 3He3He protons. The designs are highly customizable, and a generalized framework is provided for optimizing the design for alternative applications. Additionally, the understanding of the detector's response and uncertainties is greatly expanded upon. A new calibration procedure is also developed to increase the precision of the measurements.

7.
Phys Rev E ; 104(1): L013201, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412205

ABSTRACT

A series of thin glass-shell shock-driven DT gas-filled capsule implosions was conducted at the OMEGA laser facility. These experiments generate conditions relevant to the central plasma during the shock-convergence phase of ablatively driven inertial confinement fusion (ICF) implosions. The spectral temperatures inferred from the DTn and DDn spectra are most consistent with a two-ion-temperature plasma, where the initial apparent temperature ratio, T_{T}/T_{D}, is 1.5. This is an experimental confirmation of the long-standing conjecture that plasma shocks couple energy directly proportional to the species mass in multi-ion plasmas. The apparent temperature ratio trend with equilibration time matches expected thermal equilibration described by hydrodynamic theory. This indicates that deuterium and tritium ions have different energy distributions for the time period surrounding shock convergence in ignition-relevant ICF implosions.

8.
Rev Sci Instrum ; 92(4): 043548, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243391

ABSTRACT

Hot-spot shape and electron temperature (Te) are key performance metrics used to assess the efficiency of converting shell kinetic energy into hot-spot thermal energy in inertial confinement fusion implosions. X-ray penumbral imaging offers a means to diagnose hot-spot shape and Te, where the latter can be used as a surrogate measure of the ion temperature (Ti) in sufficiently equilibrated hot spots. We have implemented a new x-ray penumbral imager on OMEGA. We demonstrate minimal line-of-sight variations in the inferred Te for a set of implosions. Furthermore, we demonstrate spatially resolved Te measurements with an average uncertainty of 10% with 6 µm spatial resolution.

9.
Rev Sci Instrum ; 92(4): 043543, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243465

ABSTRACT

Diagnosing plasma magnetization in inertial confinement fusion implosions is important for understanding how magnetic fields affect implosion dynamics and to assess plasma conditions in magnetized implosion experiments. Secondary deuterium-tritium (DT) reactions provide two diagnostic signatures to infer neutron-averaged magnetization. Magnetically confining fusion tritons from deuterium-deuterium (DD) reactions in the hot spot increases their path lengths and energy loss, leading to an increase in the secondary DT reaction yield. In addition, the distribution of magnetically confined DD-triton is anisotropic, and this drives anisotropy in the secondary DT neutron spectra along different lines of sight. Implosion parameter space as well as sensitivity to the applied B-field, fuel ρR, temperature, and hot-spot shape will be examined using Monte Carlo and 2D radiation-magnetohydrodynamic simulations.

10.
Rev Sci Instrum ; 92(6): 063502, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243553

ABSTRACT

We report on the design and implementation of a new system used to characterize the energy-dependent x-ray transmission curve, Θ(E), through filters used in high-energy density physics diagnostics. Using an Amptek X-123-CdTe x-ray spectrometer together with a partially depleted silicon surface barrier detector, both the energy spectrum and total emission of an x-ray source have been accurately measured. By coupling these detectors with a custom PROTO-XRD x-ray source with interchangeable cathodes, accurate characterizations of Θ(E) for filters of varying materials and thicknesses have been obtained. The validity of the technique has been confirmed by accurately reproducing areal densities for high-purity filters with known x-ray transmission properties. In this paper, the experimental setup is described and the results of absorption calibrations performed on a variety of different filters are presented.

11.
Rev Sci Instrum ; 92(1): 013504, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33514215

ABSTRACT

This paper presents data from experiments with protons at non-normal incidence to CR-39 nuclear track detectors, analyzing the properties of detection efficiency, proton track diameter, track contrast, and track eccentricity. Understanding the CR-39 response to protons incident at an angle is important for designing charged particle detectors for inertial confinement fusion (ICF) applications. This study considers protons with incident energies less than 3 MeV. In this regime, an incident angle of 10° has no effect on CR-39 detection efficiency, and >85% detection efficiency is preserved up through 25° in the range of 1.0 MeV-2.1 MeV. For ICF applications, incident angles above 30° are deemed impractical for detector design due to significant drops in proton detection at all energies. We observe significant reductions in detection efficiency compared to theoretical predictions, particularly at low energies where proton tracks are etched away. The proton track diameter measured by the scan system is observed to decrease with higher incident angles. The track diameters are analyzed with two fitting models, and it is shown that the diameter-energy relation can be fit with the existing models at angles up to 30°. The optical contrast of the tracks tends to increase with the angle, meaning that the tracks are fainter, and a larger increase is observed for higher energies. Eccentricity, a measure of how elongated proton tracks are, increases with the incident angle and drops after the critical angle. The lowest energy tracks remain nearly circular even at higher angles.

12.
Phys Rev E ; 102(5-1): 051201, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33327093

ABSTRACT

Experiments on the National Ignition Facility (NIF) to study hohlraums lined with a 20-mg/cc 400-µm-thick Ta_{2}O_{5} aerogel at full scale (hohlraum diameter = 6.72 mm) are reported. Driven with a 1.6-MJ, 450-TW laser pulse, the performance of the foam liner is diagnosed using implosion hot-spot symmetry measurements of the high-density carbon (HDC) capsule and measurement of inner beam propagation through a thin-wall 8-µm Au window in the hohlraum. Results show an improved capsule performance due to laser energy deposition further inside the hohlraum, leading to a modest increase in x-ray drive and reduced preheat due to changes in the x-ray spectrum when the foam liner is included. In addition, the outer cone bubble uniformity is improved, but the predicted improvement in inner beam propagation to improve symmetry control is not realized for this foam thickness and density.

13.
Rev Sci Instrum ; 91(9): 093505, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33003822

ABSTRACT

Proton radiography is a well-established technique for measuring electromagnetic fields in high-energy-density plasmas. Fusion reactions producing monoenergetic particles, such as D3He, are commonly used as a source, produced by a capsule implosion. Using smaller capsules for radiography applications is advantageous as the source size decreases, but on the National Ignition Facility (NIF), this can introduce complications from increasing blow-by light, since the phase plate focal spot size is much larger than the capsules. We report a demonstration of backlighter targets where a "Saturn" ring is placed around the capsule to block this light. The nuclear performance of the backlighters is unperturbed by the addition of a ring. We also test a ring with an equatorial cutout, which severely affects the proton emission and is not viable for radiography applications. These results demonstrate the general viability of Saturn ring backlighter targets for use on the NIF.

14.
Rev Sci Instrum ; 91(7): 073501, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32752812

ABSTRACT

A proof-of-principle CR-39 based neutron-recoil-spectrometer was built and fielded on the Z facility. Data from this experiment match indium activation yields within a factor of 2 using simplified instrument response function models. The data also demonstrate the need for neutron shielding in order to infer liner areal densities. A new shielded design has been developed. The spectrometer is expected to achieve signal-to-background greater than 2 for the down-scattered neutron signal and greater than 30 for the primary signal.

15.
Rev Sci Instrum ; 91(5): 053502, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32486747

ABSTRACT

The detection properties of CR-39 were investigated for protons, deuterons, and tritons of various energies. Two models for the relationship between the track diameter and particle energy are presented and demonstrated to match experimental data for all three species. Data demonstrate that CR-39 has 100% efficiency for protons between 1 MeV and 4 MeV, deuterons between 1 MeV and 12.2 MeV, and tritons between 1 MeV and 10 MeV. The true upper bounds for deuterons and tritons exceed what could be measured in data. Simulations were developed to further explore the properties of CR-39 and suggest that the diameter-energy relationship of alpha particles cannot be captured by the conventional c-parameter model. These findings provide confidence in CR-39 track diameter based spectroscopy of all three species and provide invaluable insight for designing filtering for all CR-39 based diagnostics.

16.
Phys Rev Lett ; 118(18): 185003, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28524679

ABSTRACT

A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M>4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6-10 mm are irradiated with laser energies of 250 kJ per foil, generating ∼1000 km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated by deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. The observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.

17.
Rev Sci Instrum ; 87(11): 11D812, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910586

ABSTRACT

CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 µm deeper than the necessary bulk material removal.

18.
Rev Sci Instrum ; 87(11): 11E327, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910341

ABSTRACT

The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

19.
Rev Sci Instrum ; 87(11): 11D801, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910525

ABSTRACT

A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protons at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons.

20.
Rev Sci Instrum ; 86(11): 116104, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26628185

ABSTRACT

A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF's 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the (3)He(d,p)(4)He nuclear reaction reveal a bright (10(10) protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 µm) and isotropic emission (∼13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n)(3)He reactions also show 2 × 10(10) isotropically distributed 3-MeV protons.

SELECTION OF CITATIONS
SEARCH DETAIL
...