Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomicrofluidics ; 15(6): 064104, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34853627

ABSTRACT

While in most cases, jaundice can be effectively treated using phototherapy, severe cases require exchange transfusion, a relatively risky procedure in which the neonate's bilirubin-rich blood is replaced with donor blood. Here, we examine extracorporeal blood treatment in a microfluidic photoreactor as an alternative to exchange transfusion. This new treatment approach relies on the same principle as phototherapy but leverages microfluidics to speed up bilirubin removal. Our results demonstrate that high-intensity light at 470 nm can be used to rapidly reduce bilirubin levels without causing appreciable damage to DNA in blood cells. Light at 470 nm was more effective than light at 505 nm. Studies in Gunn rats show that photoreactor treatment for 4 h significantly reduces bilirubin levels, similar to the bilirubin reduction observed for exchange transfusion and on a similar time scale. Predictions for human neonates demonstrate that this new treatment approach is expected to exceed the performance of exchange transfusion using a low blood flow rate and priming volume, which will facilitate vascular access and improve safety.

2.
Cryobiology ; 92: 168-179, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31935377

ABSTRACT

In North America, red blood cells (RBCs) are currently cryopreserved in a solution of 40% glycerol. While glycerol is not inherently toxic to humans, it must be removed prior to transfusion to prevent intravascular osmotic hemolysis. The current deglycerolization procedure requires about 45 min per RBC unit. We previously presented predictions suggesting that glycerol could be safely removed from RBCs in less than 1 min. However, experimental evaluation of these methods resulted in much higher hemolysis than expected. Here we extend our previous study by considering both concentration-dependence of permeability and variability in permeability values in the mathematical optimization algorithm. To establish a model for the concentration dependence of glycerol permeability, we combined literature data with new measurements of permeability in the presence of 40% glycerol. To account for cell-dependent variability we scaled the concentration-dependent permeability model to define a permeability range for optimization. Methods designed using a range extending to 50% of the model-predicted glycerol permeability had a duration of less than 3 min and resulted in hemolysis ranging from 34% to 83%; hemolysis values were highly dependent on the blood donor. Extending the permeability range to 5% of the model-predicted value yielded a 30 min method that resulted in an average hemolysis of 12%. Our results suggest high variability in the glycerol permeability between donors and within a population of cells from the same donor. Such variability has broad implications for design of methods for equilibration of cells with cryoprotectants.


Subject(s)
Blood Preservation/methods , Cell Membrane Permeability/physiology , Cryoprotective Agents/metabolism , Erythrocytes/metabolism , Glycerol/metabolism , Hemolysis/drug effects , Algorithms , Cryopreservation/methods , Humans , Osmosis/physiology , Permeability
3.
Cryobiology ; 80: 1-11, 2018 02.
Article in English | MEDLINE | ID: mdl-29223592

ABSTRACT

For more than fifty years the human red blood cell (RBC) has been a widely studied model for transmembrane mass transport. Existing literature spans myriad experimental designs with varying results and physiologic interpretations. In this review, we examine the kinetics and mechanisms of membrane transport in the context of RBC cryopreservation. We include a discussion of the pathways for water and glycerol permeation through the cell membrane and the implications for mathematical modeling of the membrane transport process. In particular, we examine the concentration dependence of water and glycerol transport and provide equations for estimating permeability parameters as a function of concentration based on a synthesis of literature data. This concentration-dependent transport model may allow for design of improved methods for post-thaw removal of glycerol from cryopreserved blood. More broadly, the consideration of the concentration dependence of membrane permeability parameters may be important for other cell types as well, especially for design of methods for equilibration with the highly concentrated solutions used for vitrification.


Subject(s)
Blood Preservation/methods , Cell Membrane Permeability , Cryopreservation/methods , Cryoprotective Agents/metabolism , Erythrocytes , Glycerol/metabolism , Water/metabolism , Animals , Biological Transport , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...