Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 18(23): e202300228, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37817331

ABSTRACT

Converting known ligands into photoswitchable derivatives offers the opportunity to modulate compound structure with light and hence, biological activity. In doing so, these probes provide unique control when evaluating G-protein-coupled receptor (GPCR) mechanism and function. Further conversion of such compounds into covalent probes, known as photoswitchable tethered ligands (PTLs), offers additional advantages. These include localization of the PTLs to the receptor binding pocket. Covalent localization increases local ligand concentration, improves site selectivity and may improve the biological differences between the respective isomers. This work describes chemical, photophysical and biochemical characterizations of a variety of PTLs designed to target the µ-opioid receptor (µOR). These PTLs were modeled on fentanyl, with the lead disulfide-containing agonist found to covalently interact with a cysteine-enriched mutant of this medically-relevant receptor.


Subject(s)
Fentanyl , Receptors, Opioid, mu , Ligands , Receptors, Opioid, mu/metabolism , Fentanyl/chemistry , Protein Binding , Cysteine/metabolism
2.
Chemistry ; 28(63): e202201515, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-35899620

ABSTRACT

Photoswitchable ligands as biological tools provide an opportunity to explore the kinetics and dynamics of the clinically relevant µ-opioid receptor. These ligands can potentially activate or deactivate the receptor when desired by using light. Spatial and temporal control of biological activity allows for application in a diverse range of biological investigations. Photoswitchable ligands have been developed in this work, modelled on the known agonist fentanyl, with the aim of expanding the current "toolbox" of fentanyl photoswitchable ligands. In doing so, ligands have been developed that change geometry (isomerize) upon exposure to light, with varying photophysical and biochemical properties. This variation in properties could be valuable in further studying the functional significance of the µ-opioid receptor.


Subject(s)
Fentanyl , Fentanyl/pharmacology , Fentanyl/chemistry , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...