Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 39(9): 1878-86, 2005 May.
Article in English | MEDLINE | ID: mdl-15899286

ABSTRACT

The culturability of Escherichia coli in undersaturated drinking water with respect to CaCO3 (corrosive water) or in oversaturated water (non-corrosive water) was tested in different reactors: glass flasks (batch, "non-reactive" wall); glass reactors (chemostat, "non-reactive" wall) versus a corroded cast iron Propella reactor (chemostat, "reactive" wall) and a 15-year-old distribution system pilot (chemostat, "reactive" wall with 1% corroded cast iron and 99% cement-lined cast iron). The E. coli in E. coli-spiked drinking water was not able to maintain its culturability and colonize the experimental systems. It appears from our results that the optimal pH for maintaining E. coli culturability was around 8.2 or higher. However, in reactors with a reactive wall (corroded cast iron), the decline in E. coli culturability was slower when the pH was adjusted to 7.9 or 7.7 (i.e. a reactor fed with corrosive water; pHpHs). We tentatively deduce that corrosion products coming from chemical reactions driven by corrosive waters on the pipe wall improve E. coli culturability.


Subject(s)
Escherichia coli/growth & development , Hydrogen-Ion Concentration , Water Microbiology , Water Supply , Bioreactors , Calcium Carbonate , Colony Count, Microbial , Corrosion , Iron/chemistry , Rivers
2.
Appl Environ Microbiol ; 71(2): 734-40, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15691924

ABSTRACT

When exposed to oxidation, algae release dissolved organic matter with significant carbohydrate (52%) and biodegradable (55 to 74%) fractions. This study examined whether algal organic matter (AOM) added in drinking water can compromise water biological stability by supporting bacterial survival. Escherichia coli (1.3 x 10(5) cells ml(-1)) was inoculated in sterile dechlorinated tap water supplemented with various qualities of organic substrate, such as the organic matter coming from chlorinated algae, ozonated algae, and acetate (model molecule) to add 0.2 +/- 0.1 mg of biodegradable dissolved organic carbon (BDOC) liter(-1). Despite equivalent levels of BDOC, E. coli behavior depended on the source of the added organic matter. The addition of AOM from chlorinated algae led to an E. coli growth equivalent to that in nonsupplemented tap water; the addition of AOM from ozonated algae allowed a 4- to 12-fold increase in E. coli proliferation compared to nonsupplemented tap water. Under our experimental conditions, 0.1 mg of algal BDOC was sufficient to support E. coli growth, whereas the 0.7 mg of BDOC liter(-1) initially present in drinking water and an additional 0.2 mg of BDOC acetate liter(-1) were not sufficient. Better maintenance of E. coli cultivability was also observed when AOM was added; cultivability was even increased after addition of AOM from ozonated algae. AOM, likely to be present in treatment plants during algal blooms, and thus potentially in the treated water may compromise water biological stability.


Subject(s)
Chlorine/pharmacology , Disinfectants/pharmacology , Escherichia coli/growth & development , Eukaryota/metabolism , Organic Chemicals/pharmacology , Ozone/pharmacology , Acetates , Colony Count, Microbial , Escherichia coli/drug effects , Escherichia coli/physiology , Organic Chemicals/metabolism , Oxidation-Reduction , Water Purification/methods , Water Supply
3.
Water Res ; 37(3): 493-500, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12688683

ABSTRACT

The effects of discontinuous chlorination on the characteristics of the water in a pilot drinking water distribution network were investigated. The release or consumption of organic matter (as dissolved organic carbon, DOC) following chlorination and non-chlorination periods were estimated, as were changes in bacterial cell production. In each unchlorinated network 0.3 mg DOCl(-1) was consumed and the average cell production was approximately 1.3 x 10(5) cells ml(-1). In discontinously chlorinated networks (chlorine treatment: 3.3 mg Cl2l(-1), chlorine residual: 0.1 mg Cl2l(-1)) the DOC release (DOCout-DOCin) was between 0.1 and 0.2 mg Cl(-1). Biomass production (cells(out)-cells(in)) during this chlorination period was lower (approximately 2 x 10(4) cells ml(-1)). The delay before DOC was released in chlorinated networks appeared to be less than 24 h, which corresponds to one hydraulic residence time. Likewise, when chlorination was stopped, 24 h or less were required before an efficient DOC removal was resumed. When chlorination was prolonged the observed release of DOC was progressively reduced from 0.2 mg l(-1) to zero, thus after 6 weeks of continuous chlorination the DOCin was equivalent to the DOCout.


Subject(s)
Carbon/analysis , Chlorine Compounds/chemistry , Water Purification , Water Supply , Biofilms , Chlorine Compounds/analysis , Organic Chemicals/analysis , Water Movements
4.
Water Res ; 35(4): 1100-5, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11235877

ABSTRACT

The effect of phosphate addition in drinking water was tested under static conditions as batch tests and under dynamic conditions using continuously fed reactors. Phosphate supplements in batch tests from 0.1 to 2 mg P-PO4 L(-1) did not show any relationship between bacterial growth and phosphate concentration. Dynamic tests in slightly corroded reactor (stainless steel) treated at 1 mg P-PO4 L(-1) showed only a moderate improvement in the growth of microorganisms. On the contrary, phosphate treatment applied to the highly corroded reactor (unlined cast iron) led to an immediate, drastic drop in iron oxide release and bacterial production. Phosphate uptake by the reactor wall was less than 14% with the stainless-steel reactor and 70-90% with the corroded cast iron reactor. Moreover, about 5% of the phosphate associated to corroded iron pipe walls was released for 20 days after the end of treatment.


Subject(s)
Bacteria/drug effects , Bacteria/growth & development , Phosphates/administration & dosage , Water Microbiology , Water Supply/analysis , Bioreactors , Corrosion , Sanitary Engineering/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...