Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 9(45): 17681-17687, 2017 Nov 23.
Article in English | MEDLINE | ID: mdl-29119985

ABSTRACT

Au-containing nanolaminated carbides Mo2AuC and Mo2(Au1-xGax)2C were synthesized by a thermally induced substitutional reaction in Mo2GaC and Mo2Ga2C, respectively. The Au substitution of the Ga layers in the structures was observed using cross-sectional high-resolution scanning transmission electron microscopy. Expansion of c lattice parameters was also observed in the Au-containing phases compared to the original phases. Energy dispersive spectroscopy detected residual Ga in Au-substituted layers of both phases with a peculiar Ga in-plane ordering for Au : Ga = 9 : 1 ratio along the Au-Ga layers in Mo2(Au1-xGax)2C. These results indicate a generalization of the Au substitution reaction for the A elements in MAX phases.

2.
J Phys Condens Matter ; 29(19): 195701, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28319035

ABSTRACT

A theoretical and experimental study on the growth and properties of a ternary carbon-based material, CS x F y , synthesized from SF6 and C as primary precursors is reported. The synthetic growth concept was applied to model the possible species resulting from the fragmentation of SF6 molecules and the recombination of S-F fragments with atomic C. The possible species were further evaluated for their contribution to the film growth. Corresponding solid CS x F y thin films were deposited by reactive direct current magnetron sputtering from a C target in a mixed Ar/SF6 discharge with different SF6 partial pressures ([Formula: see text]). Properties of the films were determined by x-ray photoelectron spectroscopy, x-ray reflectivity, and nanoindentation. A reduced mass density in the CS x F y films is predicted due to incorporation of precursor species with a more pronounced steric effect, which also agrees with the low density values observed for the films. Increased [Formula: see text] leads to decreasing deposition rate and increasing density, as explained by enhanced fluorination and etching on the deposited surface by a larger concentration of F/F2 species during the growth, as supported by an increment of the F relative content in the films. Mechanical properties indicating superelasticity were obtained from the film with lowest F content, implying a fullerene-like structure in CS x F y compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...