Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 376(6594): 762-767, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35549402

ABSTRACT

Challenges in fabricating all-perovskite tandem solar cells as modules rather than as single-junction configurations include growing high-quality wide-bandgap perovskites and mitigating irreversible degradation caused by halide and metal interdiffusion at the interconnecting contacts. We demonstrate efficient all-perovskite tandem solar modules using scalable fabrication techniques. By systematically tuning the cesium ratio of a methylammonium-free 1.8-electron volt mixed-halide perovskite, we improve the homogeneity of crystallization for blade-coated films over large areas. An electrically conductive conformal "diffusion barrier" is introduced between interconnecting subcells to improve the power conversion efficiency (PCE) and stability of all-perovskite tandem solar modules. Our tandem modules achieve a certified PCE of 21.7% with an aperture area of 20 square centimeters and retain 75% of their initial efficiency after 500 hours of continuous operation under simulated 1-sun illumination.

2.
Opt Express ; 27(12): A758-A765, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31252852

ABSTRACT

Higher reflectance of the rear-side dielectric stack, at the wavelength of the laser source used for ablation, reduces laser-induced damage and improves the open-circuit voltage of PERC silicon solar cells. The understanding of this correlation increases the working window of cost-effective nanosecond laser ablation of the rear-side dielectric for higher-efficiency industrial PERC-like solar cells.

3.
Small ; 8(11): 1664-8, 2012 Jun 11.
Article in English | MEDLINE | ID: mdl-22438080

ABSTRACT

An efficient Si/PEDOT:PSS hybrid solar cell using synergistic surface texturing of Si nanowires (SiNWs) on pyramids is demonstrated. A power conversion efficiency (PCE) of 9.9% is achieved from the cells using the SiNW/pyramid binary structure, which is much higher than similar cells based on planar Si, pyramid-textured Si, and SiNWs. The PCE is the highest reported to-date for hybrid cells based on Si nanostructures and PEDOT.

4.
ACS Appl Mater Interfaces ; 4(3): 1704-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22391479

ABSTRACT

High-efficiency hybrid solar cells are fabricated using a simple approach of spin coating a transparent hole transporting organic small molecule, 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) on silicon nanowires (SiNWs) arrays prepared by electroless chemical etching. The characteristics of the hybrid cells are investigated as a function of SiNWs length from 0.15 to 5 µm. A maximum average power conversion efficiency of 9.92% has been achieved from 0.35 µm length SiNWs cells, despite a 12% shadowing loss and the absence of antireflective coating and back surface field enhancement. It is found that enhanced aggregations in longer SiNWs limit the cell performance due to increased series resistance and higher carrier recombination in the shorter wavelength region. The effects of the Si substrate doping concentrations on the performance of the cells are also investigated. Cells with higher substrate doping concentration exhibit a significant drop in the incident photons-to-current conversion efficiency (IPCE) in the near infrared region. Nevertheless, a promising short circuit current density of 19 mA/cm(2) and IPCE peak of 57% have been achieved for a 0.9 µm length SiNWs cell fabricated on a highly doped substrate with a minority-carrier diffusion length of only 15 µm. The results suggest that such hybrid cells can potentially be realized using Si thin films instead of bulk substrates. This is promising towards realizing low-cost and high-efficiency SiNWs/organic hybrid solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...