Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 21(1): 150, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34034714

ABSTRACT

BACKGROUND: Polyporus polysaccharide (PPS), an active ingredient of traditional Chinese medicinal Polyporus umbellatus, has multiple biological functions, such as anti-cancer, immune-regulating and hepatoprotective activities. The purpose of this study was to investigate the mechanism of homogeneous polyporus polysaccharide (HPP) activated macrophages in the treatment of bladder cancer. METHODS: 100 ng/mL Phorbol myristate acetate (PMA) was used to induce THP-1 human leukemic cells as a macrophage model. Then macrophages derived from THP-1 were treated with different concentrations of HPP (1, 10 and 100 µg/mL). Flow cytometry and RT-PCR were used to detected the expression of CD16, CD23, CD86, CD40 and interleukin (IL)-Iß, iNOS mRNA. ELISA was used to test the change of IL-1ß and TNF-α in macrophage after the treatment with HPP. The conditioned medium from HPP-polarized macrophages was used to detect the effect of activated macrophages on bladder cancer. MTT assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, Transwell assay, and Western blot analysis were used to detect the effects of polarized macrophages on the viability, proliferation, apoptosis, and migration of bladder cancer cells. Western blot was also used to analysis the change of JAK2/NF-κB pathway protein. RESULTS: HPP promoted the expression of pro-inflammatory factors, such as IL-Iß, TNF-α and iNOS, and surface molecules CD86, CD16, CD23, and CD40 in macrophages and then polarized macrophages to M1 type. Results demonstrated that activated macrophages inhibited the proliferation of bladder cancer cells, regulated their apoptosis, and inhibited migration and epithelial-mesenchymal transformation (EMT). JAK2/NF-κB pathways were downregulated in the anti-bladder cancer process of activated macrophages. CONCLUSION: The findings indicated that HPP inhibited the proliferation and progression of bladder cancer by the polarization of macrophages to M1 type, and JAK2/NF-κB pathway was downregulated in the process of anti-bladder cancer.


Subject(s)
Fungal Polysaccharides/pharmacology , Macrophages/drug effects , Polyporus/chemistry , Tumor Microenvironment/drug effects , Urinary Bladder Neoplasms/metabolism , Cytokines/metabolism , Humans , Janus Kinase 2/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , THP-1 Cells
2.
Front Chem ; 8: 581, 2020.
Article in English | MEDLINE | ID: mdl-32850623

ABSTRACT

Bladder cancer is one of the most malignant tumors closely associated with macrophage immune dysfunction. The Chinese medicine polyporus has shown excellent efficacy in treating bladder cancer, with minimal side effects. However, its material basis and mechanism of action remain unclear. A new water-soluble polysaccharide (HPP) with strong immunomodulatory activity was isolated from the fungus Polyporus umbellatus (Pers.) Fries. HPP had an average molecular weight of 6.88 kDa and was composed mainly of an <-(1 → 4)-linked D-galactan backbone. The immunomodulatory activity of HPP was determined in vitro, and the results revealed that it could obviously increase the secretion of immune factors by IFN-γ-stimulated macrophages, including nitric oxide (NO), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), RANTES and interleukin-23 (IL-23), and the expression of the cell membrane molecule CD80. In addition, HPP was recognized by Toll-like receptor 2 (TLR2) and activated the signaling pathways of NF-κB and NLRP3 in a bladder cancer microenvironment model, indicating that HPP could enhance host immune system function. These findings demonstrated that HPP may be a potential immune modulator in the treatment of immunological diseases or bladder cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...