Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2020: 7106525, 2020.
Article in English | MEDLINE | ID: mdl-32148655

ABSTRACT

OBJECTIVE: In renal ischemia/reperfusion injury (RIRI), nuclear factor κB (NF-κB (NF-κB (NF. METHODS: Eighteen male Sprague-Dawley rats were randomly allocated into the sham group, the I/R group, and the VNS+I/R group, 6 rats per group. An RIRI model was induced by a right nephrectomy and blockade of the left renal pedicle vessels for 45 min. After 6 h of reperfusion, the blood samples and renal samples were collected. The VNS treatment was performed throughout the I/R process in the VNS+I/R group using specific parameters (20 Hz, 0.1 ms in duration, square waves) known to produce a small but reliable bradycardia. Blood was used for evaluation of renal function and inflammatory state. Renal injury was evaluated via TUNEL staining. Renal samples were harvested to evaluate renal oxidative stress, NF-κB (NF. RESULTS: The VNS treatment reduces serum creatinine (Cr) and blood urea nitrogen (BUN) levels. Simultaneously, the levels of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1-beta (IL-1ß) were significantly increased in the I/R group, but VNS treatment markedly ameliorated this inflammatory response. Furthermore, the VNS ameliorated oxidant stress and renal injury, indicated by a decrease in 3-nitrotyrosine (3-NT) formation and MDA and MPO levels and an increase in the SOD level compared to that in the I/R group. Finally, the VNS also significantly decreases NF-κB (NF. CONCLUSION: Our findings indicate that NF-κB activation increased iNOS expression and promoted RIRI and that VNS treatment attenuated RIRI by inhibiting iNOS expression, oxidative stress, and inflammation via NF-κB inactivation.κB (NF-κB (NF.


Subject(s)
NF-kappa B , Nitric Oxide Synthase Type II , Reperfusion Injury , Vagus Nerve Stimulation , Animals , Male , Rats , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Vagus Nerve Stimulation/methods
2.
Oxid Med Cell Longev ; 2019: 6508328, 2019.
Article in English | MEDLINE | ID: mdl-31214281

ABSTRACT

Endothelin-1 (ET-1) is synthesized primarily by endothelial cells. ET-1 administration in vivo enhances the cardiac sympathetic afferent reflex and sympathetic activity. Previous studies have shown that sympathetic hyperactivity promotes malignant ventricular arrhythmia (VA). The aim of this study was to investigate whether ET-1 could activate the left stellate ganglion (LSG) and promote malignant VA. Twelve male beagle dogs who received local microinjections of saline (control, n = 6) and ET-1 into the LSG (n = 6) were included. The ventricular effective refractory period (ERP), LSG function, and LSG activity were measured at different time points. VA was continuously recorded for 1 h after left anterior descending occlusion (LADO), and LSG tissues were then collected for molecular detection. Compared to that of the control group, local ET-1 microinjection significantly decreased the ERP and increased the occurrence of VA. In addition, local microinjection of ET-1 increased the function and activity of the LSG in the normal and ischemic hearts. The expression levels of proinflammatory cytokines and the protein expression of c-fos and nerve growth factor (NGF) in the LSG were also increased. More importantly, endothelin A receptor (ETA-R) expression was found in the LSG, and its signaling was significantly activated in the ET-1 group. LSG activation induced by local ET-1 microinjection aggravates LADO-induced VA. Activated ETA-R signaling and the upregulation of proinflammatory cytokines in the LSG may be responsible for these effects.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Endothelial Cells/metabolism , Endothelin-1/metabolism , Myocardial Ischemia/physiopathology , Stellate Ganglion/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Dogs , Electrocardiography , Endothelial Cells/pathology , Humans , Inflammation Mediators/metabolism , Male , Nerve Growth Factors/metabolism , Receptor, Endothelin A/metabolism , Signal Transduction , Sympathetic Nervous System
SELECTION OF CITATIONS
SEARCH DETAIL
...