Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 804: 150100, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34517323

ABSTRACT

Land surface albedo plays a crucial role in the land surface energy budget and climate. This paper identified the spatiotemporal variations of surface albedo on the Tibetan Plateau (TP) from 1982 to 2015, and quantified the relationships between the spatial and temporal patterns of the albedo and associated influencing factors (snow cover, vegetation, and soil moisture) on the seasonal and interannual basis using satellite products and reanalysis data. It was determined that the albedo presented a distinct spatial variability, with high values in mountainous areas and low values on the southeastern TP. Spatially, average albedo exhibited a positive correlation with snow cover and negative correlations with vegetation and soil moisture. Average albedo over the whole TP had a clear seasonal cycle with a peak in winter and a minimum value in summer, which is dictated by seasonal changes in snow and vegetation covers. Annual average albedo exhibited a weakly downward trend, which was mainly contributed by a significant decrease in summer, pointing to the important role in vegetation dynamics for temporal change of the albedo. On the regional basis, interannual variation of albedo was more responsive to snow cover over the snow- and vegetation-coexisting area than the snow-covered area, and to changes in Normalized Difference Vegetation Index (NDVI) over the vegetation-covered area than the snow- and vegetation-coexisting area; albedo had a weakly negative correlation with soil moisture over bare soil. Furthermore, our results indicated that snow cover was the dominant factor for albedo change on mountainous areas, and vegetation change predominated the variation of albedo on the eastern, southern, and northwestern TP. Specifically, variations in snow cover contributed more than those of vegetation to the interannual albedo variation over the Three Rivers Headwater Region. These results would be beneficial for better understanding the climate and eco-environment changes over the TP.


Subject(s)
Climate , Snow , Climate Change , Seasons , Tibet
2.
J Adv Model Earth Syst ; 11(8): 2503-2522, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31762931

ABSTRACT

The Tibetan Plateau is regarded as the Earth's Third Pole, which is the source region of several major rivers that impact more 20% the world population. This high-altitude region is reported to have been undergoing much greater rate of weather changes under global warming, but the existing reanalysis products are inadequate for depicting the state of the atmosphere, particularly with regard to the amount of precipitation and its diurnal cycle. An ensemble Kalman filter (EnKF) data assimilation system based on the limited-area Weather Research and Forecasting (WRF) model was evaluated for use in developing a regional reanalysis over the Tibetan Plateau and the surrounding regions. A 3-month prototype reanalysis over the summer months (June-August) of 2015 using WRF-EnKF at a 30-km grid spacing to assimilate nonradiance observations from the Global Telecommunications System was developed and evaluated against independent sounding and satellite observations in comparison to the ERA-Interim and fifth European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5) global reanalysis. Results showed that both the posterior analysis and the subsequent 6- to 12-hr WRF forecasts of the prototype regional reanalysis compared favorably with independent sounding observations, satellite-based precipitation versus those from ERA-Interim and ERA5 during the same period. In particular, the prototype regional reanalysis had clear advantages over the global reanalyses of ERA-Interim and ERA5 in the analysis accuracy of atmospheric humidity, as well as in the subsequent downscale-simulated precipitation intensity, spatial distribution, diurnal evolution, and extreme occurrence.

SELECTION OF CITATIONS
SEARCH DETAIL
...