Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med ; 22(1): 224, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831391

ABSTRACT

BACKGROUND: Type 2 diabetes is associated with a variety of complications, including micro- and macrovascular complications, neurological manifestations and poor wound healing. Adhering to a Mediterranean Diet (MED) is generally considered an effective intervention in individuals at risk for type 2 diabetes mellitus (T2DM). However, little is known about its effect with respect to the different specific manifestations of T2DM. This prompted us to explore the effect of MED on the three most significant microvascular complications of T2DM: diabetic retinopathy (DR), diabetic kidney disease (DKD), and vascular diabetic neuropathies (DN). METHODS: We examined the association between the MED and the incidence of these microvascular complications in a prospective cohort of 33,441 participants with hyperglycemia free of microvascular complications at baseline, identified in the UK Biobank. For each individual, we calculated the Alternate Mediterranean Diet (AMED) score, which yields a semi-continuous measure of the extent to which an individual's diet can be considered as MED. We used Cox proportional hazard models to analyze hazard ratios (HRs) and 95% confidence intervals (CIs), adjusting for demographics, lifestyle factors, medical histories and cardiovascular risk factors. RESULTS: Over a median of 12.3 years of follow-up, 3,392 cases of microvascular complications occurred, including 1,084 cases of diabetic retinopathy (DR), 2,184 cases of diabetic kidney disease (DKD), and 632 cases of diabetic neuropathies (DN), with some patients having 2 or 3 microvascular complications simultaneously. After adjusting for confounders, we observed that higher AMED scores offer protection against DKD among participants with hyperglycemia (comparing the highest AMED scores to the lowest yielded an HR of 0.79 [95% CIs: 0.67, 0.94]). Additionally, the protective effect of AMED against DKD was more evident in the hyperglycemic participants with T2DM (HR, 0.64; 95% CI: 0.50, 0.83). No such effect, however, was seen for DR or DN. CONCLUSIONS: In this prospective cohort study, we have demonstrated that higher adherence to a MED is associated with a reduced risk of DKD among individuals with hyperglycemia. Our study emphasizes the necessity for continued research focusing on the benefits of the MED. Such efforts including the ongoing clinical trial will offer further insights into the role of MED in the clinical management of DKD.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Diet, Mediterranean , Hyperglycemia , Humans , Prospective Studies , Male , Female , Middle Aged , Diabetic Nephropathies/diet therapy , Diabetic Nephropathies/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/diet therapy , Aged , Hyperglycemia/epidemiology , Hyperglycemia/complications , Adult , United Kingdom/epidemiology , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/diet therapy , Incidence , Diabetic Neuropathies/epidemiology , Diabetic Neuropathies/diet therapy , Risk Factors
2.
Obesity (Silver Spring) ; 31(6): 1514-1529, 2023 06.
Article in English | MEDLINE | ID: mdl-37203329

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the efficacy and safety of modified fasting therapy, and a retrospective study was conducted to analyze changes in clinical indicators of hospitalized fasting patients. METHODS: A total of 2054 hospitalized fasting patients were enrolled in this observational study. All participants underwent 7 days of modified fasting therapy. The clinical efficacy biomarkers, safety indicators, and body composition were measured before and after fasting. RESULTS: The modified fasting therapy reduced body weight, BMI, abdominal circumference, systolic blood pressure, and diastolic blood pressure significantly. Blood glucose and indicators of body composition were improved to various extents (all p < 0.05). There was a small increase in liver function, kidney function, uric acid, electrolytes, blood count, coagulation, and uric biomarkers. Subgroup analysis results showed that cardiovascular diseases benefited from modified fasting therapy. CONCLUSIONS: At present this study is the largest retrospective population-based study about modified fasting therapy. The results from 2054 patients showed that the modified fasting therapy lasting 7 days was efficient and safe. It led to improvements in physical health and body weight-associated indicators, as well as body composition and relevant cardiovascular risk factors.


Subject(s)
Fasting , Weight Loss , Humans , Retrospective Studies , Body Weight , Blood Pressure , Blood Glucose , Biomarkers , Body Mass Index
3.
Pharmacol Rep ; 70(5): 1040-1046, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30144665

ABSTRACT

BACKGROUND: Aging is one of the most important inevitable risk factors of Alzheimer disease (AD). Oxidative stress plays a critical role in the process of aging. Curcumin has been proposed to improve neural damage, especially neurodegenerative injury, through its antioxidant and anti-inflammatory properties. Therefore, we investigated the effects of curcumin on acrolein-induced AD-like pathologies in HT22 cells. METHODS: HT22 murine hippocampal neuronal cells were treated with 25µM acrolein for 24h with or without pre-treating with curcumin at the selected optimum concentration (5µg/mL) for 30min. Cell viability and apoptosis were measured by CCK8 assay and flow cytometric analysis. Levels of glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) were detected by a GSH assay kit or commercial assay kits, respectively. Alterations in the expression of BDNF/TrkB and key enzymes involved in amyloid precursor protein (APP) metabolism were assessed by western blotting. RESULTS: Data showed that curcumin significantly reversed acrolein-induced oxidative stress indicated by depletion of GSH and SOD, and elevation of MDA. The findings also suggested curcumin's potential in protecting HT22 cells against acrolein through regulating the BDNF/TrkB signaling. In addition, acrolein-induced reduction in A-disintegrin and metalloprotease, and the increase of amyloid precursor protein, ß-secretase, and receptor for advanced glycation end products were reversed either, and most of them were nearly restored to the control levels by curcumin. CONCLUSION: These findings demonstrate the protective effects of curcumin on acrolein-induced neurotoxicity in vitro, which further suggests its potential role in the treatment of AD.


Subject(s)
Acrolein/antagonists & inhibitors , Acrolein/toxicity , Curcumin/pharmacology , Hippocampus/cytology , Neuroprotective Agents/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/biosynthesis , Animals , Apoptosis/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Cell Survival/drug effects , Cells, Cultured , Disintegrins/metabolism , Glutathione/metabolism , Malondialdehyde/metabolism , Membrane Glycoproteins/metabolism , Metalloproteases/metabolism , Mice , Protein-Tyrosine Kinases/metabolism , Receptor for Advanced Glycation End Products/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...