Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675250

ABSTRACT

Some strains of the dinoflagellate species Prorocentrum hoffmannianum show contrasting ability to produce diarrhetic shellfish poisoning (DSP) toxins. We previously compared the okadaic acid (OA) production level between a highly toxic strain (CCMP2804) and a non-toxic strain (CCMP683) of P. hoffmannianum and revealed that the cellular concentration of OA in CCMP2804 would increase significantly under the depletion of phosphate. To understand the molecular mechanisms, here, we compared and analyzed the proteome changes of both strains growing under normal condition and at phosphate depletion using two-dimensional gel electrophoresis (2-DE). There were 41 and 33 differential protein spots observed under normal condition and phosphate depletion, respectively, of which most were upregulated in CCMP2804 and 22 were common to both conditions. Due to the lack of matched peptide mass fingerprints in the database, de novo peptide sequencing was applied to identify the differentially expressed proteins. Of those upregulated spots in CCMP2804, nearly 60% were identified as peridinin-chlorophyll a-binding protein (PCP), an important light-harvesting protein for photosynthesis in dinoflagellates. We postulated that the high expression of PCP encourages the production of DSP toxins by enhancing the yields of raw materials such as acetate, glycolate and glycine. Other possible mechanisms of toxicity related to PCP might be through triggering the transcription of non-ribosomal peptide synthetase/polyketide synthase genes and the transportation of dinophysistoxin-4 from chloroplast to vacuoles.


Subject(s)
Dinoflagellida , Phosphates , Chlorophyll A/metabolism , Phosphates/metabolism , Up-Regulation , Carrier Proteins/metabolism , Okadaic Acid , Dinoflagellida/genetics
2.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769058

ABSTRACT

Karenia mikimotoi is a well-known harmful algal bloom species. Blooms of this dinoflagellate have become a serious threat to marine life, including fish, shellfish, and zooplanktons and are usually associated with massive fish death. Despite the discovery of several toxins such as gymnocins and gymnodimines in K. mikimotoi, the mechanisms underlying the ichthyotoxicity of this species remain unclear, and molecular studies on this topic have never been reported. The present study investigates the fish-killing mechanisms of K. mikimotoi through comparative proteomic analysis. Marine medaka, a model fish organism, was exposed to K. mikimotoi for a three-part time period (LT25, LT50 and LT90). Proteins extracted from the whole fish were separated by using two-dimensional gel electrophoresis, and differentially expressed proteins were identified with reference to an untreated control. The change in fish proteomes over the time-course of exposure were analyzed. A total of 35 differential protein spots covering 19 different proteins were identified, of which most began to show significant change in expression levels at the earliest stage of intoxication. Among the 19 identified proteins, some are closely related to the oxidative stress responses, energy metabolism, and muscle contraction. We propose that oxidative stress-mediated muscle damage might explain the symptoms developed during the ichthyotoxicity test, such as gasping for breath, loss of balance, and body twitching. Our findings lay the foundations for more in-depth studies of the mechanisms of K. mikimotoi's ichthyotoxicity.


Subject(s)
Dinoflagellida/pathogenicity , Fishes/metabolism , Fishes/parasitology , Proteome/metabolism , Animals , Energy Metabolism/physiology , Harmful Algal Bloom/physiology , Muscle Contraction/physiology , Oxidative Stress/physiology , Proteomics/methods
3.
Proteome Sci ; 18: 5, 2020.
Article in English | MEDLINE | ID: mdl-32390769

ABSTRACT

BACKGROUND: Marine medaka is among the most popular models of fish species for ecotoxicology and environmental research and proteomic studies are useful tools for understanding the molecular responses of medaka upon exposure to different environmental stressors. The preparation of high-quality protein samples is the key to producing high-quality two-dimensional gel electrophoresis (2-DE) results for proteomic analysis. In recent years, Trizol-based protein extraction has been gaining popularity because of its promising performance in producing high-quality 2-DE as well as the convenience of the method. METHODS: Three Trizol-based approaches (Trizol method, Aliquot Trizol method and Trizol method with a commercial clean-up kit) were used to extract proteins from a marine medaka sample and 2-DE profiles were produced. Quality of the 2-DE profiles and effectiveness of the extraction methods were evaluated. For comparison, two common protein extraction methods (lysis buffer method and trichloroacetic acid (TCA)/acetone precipitation extraction) were also applied in parallel to Trizol-based approaches. RESULTS: Any of the three Trizol-based approaches produced a high-quality 2-DE profile of marine medaka compared with both lysis buffer method and TCA/acetone precipitation extraction. In addition, Trizol method with a commercial clean-up kit produced the best 2-DE profile in terms of background clarity, number of spots and resolution of proteins. CONCLUSIONS: Trizol-based approaches offered better choices than traditional protein extraction methods for 2-DE analysis of marine medaka. The modified version of Trizol method with a commercial clean-up kit was shown to produce the best 2-DE profile.

SELECTION OF CITATIONS
SEARCH DETAIL
...