Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 648: 123564, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37914106

ABSTRACT

Recombinant adeno-associated virus (rAAV) has emerged as the leading gene delivery platform for treatment of monogenic disorders. Currently, for clinical and commercial products, rAAVs are typically formulated and stored below -65 °C as frozen liquid. Their long-term storage is often far from ideal because it may result in shorter drug product (DP) shelf-life compared to recombinant protein-based biologics, and also presents challenges for supply chain and inventory management. Consequently, there is great interest in developing robust lyophilized AAV DPs that are stable at 2 to 8 °C. In this study, we evaluated formulation excipients required for stable lyophilized AAV8 products including buffers, salts, cryoprotectants/lyoprotectants, surfactants, and bulking agents, and optimized the concentrations and ratios between the excipients. This led to the identification of the lead formulation that demonstrated short-term in-solution stability at 25 °C and, upon lyophilization, sufficient long-term stability at 2 to 8 °C. Our study demonstrated that, in the presence of 110 mM salts, mannitol can serve as an effective bulking agent with the appropriate formulation and lyophilization process design, and the sucrose to mannitol ratio is critical to maintain the stability and cake appearance of the lyophilized AAV8 DP. Thorough characterization of the effect of formulation components on the properties and quality of the lyophilized DP led to an optimized AAV8 lyophilized DP. This approach could be applied to streamline the future development of lyophilized AAV gene therapy products with various target transgenes and capsid serotypes.


Subject(s)
Excipients , Salts , Freeze Drying , Recombinant Proteins , Drug Stability , RNA , Mannitol
2.
Science ; 356(6339): 757-759, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28522536

ABSTRACT

Insulin-like growth factor 2 (IGF2) is the major fetal growth hormone in mammals. We identify zinc finger protein 568 (ZFP568), a member of the rapidly evolving Kruppel-associated box-zinc finger protein (KRAB-ZFP) family linked primarily to silencing of endogenous retroelements, as a direct repressor of a placental-specific Igf2 transcript (designated Igf2-P0) in mice. Loss of Zfp568, which causes gastrulation failure, or mutation of the ZFP568-binding site at the Igf2-P0 promoter causes inappropriate Igf2-P0 activation. Deletion of Igf2 can completely rescue Zfp568 gastrulation phenotypes through late gestation. Our data highlight the exquisite selectivity with which members of the KRAB-ZFP family repress their targets and identify an additional layer of transcriptional control of a key growth factor regulating fetal and placental development.


Subject(s)
Embryo, Mammalian/metabolism , Insulin-Like Growth Factor II/deficiency , Insulin-Like Growth Factor II/genetics , Nuclear Proteins/metabolism , Animals , Female , Gastrulation/genetics , Gene Expression Regulation , Mice , Mice, Knockout , Mutation , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Placenta/metabolism , Pregnancy , Promoter Regions, Genetic/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...