Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(5): 3617-3621, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36649128

ABSTRACT

Photocatalytic water splitting is forecasted as a promising strategy for H2 production. In this work, novel zinc oxide/zinc sulfide (ZnOS-x) (x = 1, 2, 3 and 4) heterostructures were fabricated by a collaborative hydrothermal and calcination method with different amounts of trithiocyanuric acid. The formation of ZnOS-x heterostructures was confirmed by PXRD, XPS, and HRTEM. Moreover, ZnOS-3 nanoparticles exhibited homogeneous and smooth surface morphology structure. ZnOS-3 displayed efficient charge separation and transfer efficiency upon photoinduction. ZnOS-3 showed the highest average H2 evolution reaction rate (78.87 µmol h-1) under visible-light irradiation, which increased with increase in the ratio of trithiocyanuric acid in the ZnOS-x series. This work provides a new insight to prepare uniformly integrated heterostructures of metal oxides/sulfides for visible-light-driven H2 generation.

2.
ACS Appl Mater Interfaces ; 12(36): 40013-40020, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32805979

ABSTRACT

The search for chemotherapeutic drugs with a high efficiency and low toxicity continues to be a challenge in tumor treatment for scientists. Organometallic supramolecular polymers are an attractive option to achieve this goal, not only due to the fact that they possess both advantages of metal complexes and nanostructures but also because they are usually sensitive to pH. Here, we report the design and synthesis of a series novel smart microenvironment-responsive organocopper(II) supramolecular polymers with various substituted ligands to regulate their stability and anticancer efficacy. The investigation of the possible mechanisms revealed that the organocopper(II) polymers enter cancer cells through endocytosis and then induce apoptosis of cancer cells. Furthermore, the in vivo anticancer efficacy study demonstrated that these organocopper(II) polymers inhibited the tumor growth effectively without damage to the major organs. Overall, the organocopper(II) supramolecular polymers present a promising pathway to achieve high-efficiency and low-toxicity chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , Melanoma, Experimental/drug therapy , Polymers/pharmacology , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Macromolecular Substances/pharmacology , Male , Melanoma, Experimental/pathology , Mice , Mice, Nude , Models, Molecular , Particle Size , Polymers/chemistry , Skin Neoplasms/pathology , Surface Properties , Viscosity
3.
ChemistryOpen ; 8(4): 434-437, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30984487

ABSTRACT

Self-assembled functional supramolecular metallopolymers have demonstrated application potential in cancer therapy. Herein, a copper polypyridyl complex was found able to self-assemble into a supramolecular metallopolymer driven by the intermolecular interactions, which could enhance the uptake in cancer cells through endocytosis, and thus effectively inhibiting tumor growth in vivo without damaging to the major organs. This study provides a facile way to achieve enhanced anticancer efficacy by using self-assembled metallopolymers.

4.
Chem Asian J ; 11(2): 310-20, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26507802

ABSTRACT

Aquation has been proposed as crucial chemical action step for ruthenium (Ru) complexes, but its effects on the action mechanisms remain elusive. Herein, we have demonstrated the aquation process of a potent Ru polypyridyl complex (RuBmp=[Ru(II) (bmbp)(phen)Cl]ClO4 , bmbp=2,6-bis(6-methylbenzimidazol-2-yl) pyridine, phen=phenanthroline) with a chloride ligand, and revealed that aquation of RuBmp effectively enhanced its hydrophilicity and cellular uptake, thus significantly increasing its anticancer efficacy. The aquation products (H-RuBmp=[Ru(II) (bmbp)(phen)Cl]ClO4 , [Ru(II) (bmbp)(phen)(H2 O)]ClO4 , bmbp) exhibited a much higher apoptosis-inducing ability than the intact complex, with involvement of caspase activation, mitochondria dysfunction, and interaction with cell membrane death receptors. H-RuBmp demonstrated a higher interaction potency with the cell membrane and induced higher levels of ROS overproduction in cancer cells to regulate the AKT, MAPK, and p53 signaling pathways. Taken together, this study could provide useful information for fine-tuning the rational design of next-generation metal medicines.


Subject(s)
Antineoplastic Agents/pharmacology , Ruthenium Compounds/chemistry , Antineoplastic Agents/chemistry , Biological Transport , Gene Expression Regulation/drug effects , Humans , MCF-7 Cells , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...