Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(37): e2204179119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067305

ABSTRACT

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß plaques and Tau tangles in brain tissues. Recent studies indicate that aberrant splicing and increased level of intron retention is linked to AD pathogenesis. Bioinformatic analysis revealed increased retention of intron 11 at the Tau gene in AD female dorsal lateral prefrontal cortex as compared to healthy controls, an observation validated by quantitative polymerase chain reaction using different brain tissues. Retention of intron 11 introduces a premature stop codon, resulting in the production of truncated Tau11i protein. Probing with customized antibodies designed against amino acids encoded by intron 11 showed that Tau11i protein is more enriched in AD hippocampus, amygdala, parietal, temporal, and frontal lobe than in healthy controls. This indicates that Tau messenger RNA with the retained intron is translated in vivo instead of being subjected to nonsense-mediated decay. Compared to full-length Tau441 isoform, ectopically expressed Tau11i forms higher molecular weight species, is enriched in Sarkosyl-insoluble fraction, and exhibits greater protein stability in cycloheximide assay. Stably expressed Tau11i also shows weaker colocalization with α-tubulin of microtubule network in human mature cortical neurons as compared to Tau441. Endogenous Tau11i is enriched in Sarkosyl-insoluble fraction in AD hippocampus and forms aggregates that colocalize weakly with Tau4R fibril-like structure in AD temporal lobe. The elevated level of Tau11i protein in AD brain tissues tested, coupled with biochemical properties resembling pathological Tau species suggest that retention of intron 11 of Tau gene might be an early biomarker of AD pathology.


Subject(s)
Alzheimer Disease , tau Proteins , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Brain/metabolism , Early Diagnosis , Female , Humans , Introns/genetics , Plaque, Amyloid/metabolism , tau Proteins/analysis , tau Proteins/genetics , tau Proteins/metabolism
2.
Theranostics ; 12(7): 3007-3023, 2022.
Article in English | MEDLINE | ID: mdl-35547760

ABSTRACT

Objective: Vascular dementia (VaD) is the second most common cause of dementia worldwide. The increasing contribution of lifestyle-associated risk factors to VaD has pointed towards gene-environment interactions (i.e. epigenetics). This study thus aims to investigate the DNA methylation landscape in a chronic cerebral hypoperfusion (CCH) mouse model of VaD. As a nexus between the gene-environment interaction, intermittent fasting (IF) was introduced as a prophylactic intervention. Methods: Bilateral common carotid artery stenosis (BCAS) was used to induce CCH by placing micro-coils of 0.18 mm in each common carotid artery of the mice. The coils were left in the mice for 7, 15 and 30 days to study temporal differences. IF was introduced for 16 h daily for 4 months prior to BCAS. Reduced Representation Bisulfite Sequencing (RRBS) was used to study the DNA methylation landscape. Cognitive impairment was measured using Barnes Maze Test. White matter lesions (WML) and neuronal loss were measured using Luxol fast blue staining and cresyl violet staining respectively. Results: IF mice subjected to CCH displayed significantly better cognitive learning ability and memory, improved neuropathological alterations with reduced WMLs and neuronal loss. Modulation of DNA methylation patterns in the cortex of AL CCH mice was re-modelled and signs of reversal was observed in IF CCH mice across all three timepoints. Conclusions: These findings provide an understanding of how IF may protect the brain against damage caused by CCH and show promise in offering potential beneficial effects in mitigating the neuropathology and cognitive deficits in VaD.


Subject(s)
Brain Ischemia , Carotid Stenosis , Cognitive Dysfunction , Dementia, Vascular , Animals , Brain Ischemia/complications , Carotid Stenosis/complications , Cerebrovascular Circulation/physiology , Cognitive Dysfunction/pathology , DNA Methylation , Disease Models, Animal , Fasting , Maze Learning , Mice
3.
J Neurosci ; 38(39): 8364-8377, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30104344

ABSTRACT

Elevated iron deposition has been reported in Parkinson's disease (PD). However, the route of iron uptake leading to high deposition in the substantia nigra is unresolved. Here, we show a mechanism in enhanced Fe2+ uptake via S-nitrosylation of divalent metal transporter 1 (DMT1). While DMT1 could be S-nitrosylated by exogenous nitric oxide donors, in human PD brains, endogenously S-nitrosylated DMT1 was detected in postmortem substantia nigra. Patch-clamp electrophysiological recordings and iron uptake assays confirmed increased Mn2+ or Fe2+ uptake through S-nitrosylated DMT1. We identified two major S-nitrosylation sites, C23 and C540, by mass spectrometry, and DMT1 C23A or C540A substitutions abolished nitric oxide (NO)-mediated DMT1 current increase. To evaluate in vivo significance, lipopolysaccharide (LPS) was stereotaxically injected into the substantia nigra of female and male mice to induce inflammation and production of NO. The intranigral LPS injection resulted in corresponding increase in Fe2+ deposition, JNK activation, dopaminergic neuronal loss and deficit in motoric activity, and these were rescued by the NO synthase inhibitor l-NAME or by the DMT1-selective blocker ebselen. Lentiviral knockdown of DMT1 abolished LPS-induced dopaminergic neuron loss.SIGNIFICANCE STATEMENT Neuroinflammation and high cytoplasmic Fe2+ levels have been implicated in the initiation and progression of neurodegenerative diseases. Here, we report the unexpected enhancement of the functional activity of transmembrane divalent metal transporter 1 (DMT1) by S-nitrosylation. We demonstrated that S-nitrosylation increased DMT1-mediated Fe2+ uptake, and two cysteines were identified by mass spectrometry to be the sites for S-nitrosylation and for enhanced iron uptake. One conceptual advance is that while DMT1 activity could be increased by external acidification because the gating of the DMT1 transporter is proton motive, we discovered that DMT1 activity could also be enhanced by S-nitrosylation. Significantly, lipopolysaccharide-induced nitric oxide (NO)-mediated neuronal death in the substantia nigra could be ameliorated by using l-NAME, a NO synthase inhibitor, or by ebselen, a DMT1-selective blocker.


Subject(s)
Cation Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Iron/metabolism , Locomotion , Nitric Oxide/chemistry , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Animals , Cation Transport Proteins/chemistry , Female , Humans , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/administration & dosage , Male , Mice, Transgenic
4.
Ageing Res Rev ; 25: 55-69, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26616852

ABSTRACT

Telomeres are the heterochromatic repeat regions at the ends of eukaryotic chromosomes, whose length is considered to be a determinant of biological ageing. Normal ageing itself is associated with telomere shortening. Here, critically short telomeres trigger senescence and eventually cell death. This shortening rate may be further increased by inflammation and oxidative stress and thus affect the ageing process. Apart from shortened or dysfunctional telomeres, cells undergoing senescence are also associated with hyperactivity of the transcription factor NF-κB and overexpression of inflammatory cytokines such as TNF-α, IL-6, and IFN-γ in circulating macrophages. Interestingly, telomerase, a reverse transcriptase that elongates telomeres, is involved in modulating NF-κB activity. Furthermore, inflammation and oxidative stress are implicated as pre-disease mechanisms for chronic diseases of ageing such as neurodegenerative diseases, cardiovascular disease, and cancer. To date, inflammation and telomere shortening have mostly been studied individually in terms of ageing and the associated disease phenotype. However, the interdependent nature of the two demands a more synergistic approach in understanding the ageing process itself and for developing new therapeutic approaches. In this review, we aim to summarize the intricate association between the various inflammatory molecules and telomeres that together contribute to the ageing process and related diseases.


Subject(s)
Aging/genetics , Aging/pathology , Inflammation/genetics , Inflammation/pathology , Telomere/pathology , Animals , Humans , Telomere/metabolism
5.
Hum Mol Genet ; 24(22): 6314-30, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26310625

ABSTRACT

The mutations of F-box protein 7 (FBXO7) gene (T22M, R378G and R498X) are associated with a severe form of autosomal recessive juvenile-onset Parkinson's disease (PD) (PARK 15). Here we demonstrated that wild-type (WT) FBXO7 is a stress response protein and it can play both cytoprotective and neurotoxic roles. The WT FBXO7 protein is vital to cell mitophagy and can facilitate mitophagy to protect cells, whereas mutant FBXO7 inhibits mitophagy. Upon stress, the endogenous WT FBXO7 gets up-regulated, concentrates into mitochondria and forms FBXO7 aggregates in mitochondria. However, FBXO7 mutations aggravate deleterious FBXO7 aggregation in mitochondria. The FBXO7 aggregation and toxicity can be alleviated by Proline, glutathione (GSH) and coenzyme Q10, whereas deleterious FBXO7 aggregation in mitochondria can be aggravated by prohibitin 1 (PHB1), a mitochondrial protease inhibitor. The overexpression of WT FBXO7 could lead to FBXO7 protein aggregation and dopamine neuron degeneration in transgenic Drosophila heads. The elevated FBXO7 expression and aggregation were identified in human fibroblast cells from PD patients. FBXO7 can also form aggregates in brains of PD and Alzheimer's disease. Our study provides novel pathophysiologic insights and suggests that FBXO7 may be a potential therapeutic target in FBXO7-linked neuron degeneration in PD.


Subject(s)
F-Box Proteins/genetics , Mutation , Parkinsonian Disorders/genetics , Animals , Cells, Cultured , Drosophila , F-Box Proteins/metabolism , Female , Humans , Mice , Mice, Transgenic , Mitochondria/metabolism , Mitophagy/genetics , Parkinsonian Disorders/metabolism , Pregnancy , Prohibitins , Protein Aggregates/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
6.
ASN Neuro ; 7(2)2015.
Article in English | MEDLINE | ID: mdl-25873304

ABSTRACT

Hydrogen sulfide (H2S) has been reported to exacerbate stroke outcome in experimental models. Cystathionine ß-synthase (CBS) has been implicated as the predominant H2S-producing enzyme in central nervous system. When SH-SY5Y cells were transfected to overexpress CBS, these cells were able to synthesize H2S when exposed to high levels of enzyme substrates but not substrate concentrations that may reflect normal physiological conditions. At the same time, these cells demonstrated exacerbated cell death when subjected to oxygen and glucose deprivation (OGD) together with high substrate concentrations, indicating that H2S production has a detrimental effect on cell survival. This effect could be abolished by CBS inhibition. The same effect was observed with primary astrocytes exposed to OGD and high substrates or sodium hydrosulfide. In addition, CBS was upregulated and activated by truncation in primary astrocytes subjected to OGD. When rats were subjected to permanent middle cerebral artery occlusion, CBS activation was also observed. These results imply that in acute ischemic conditions, CBS is upregulated and activated by truncation causing an increased production of H2S, which exacerbate the ischemic injuries. Therefore, CBS inhibition may be a viable approach to stroke treatment.


Subject(s)
Brain Ischemia/metabolism , Cell Hypoxia/physiology , Cystathionine beta-Synthase/metabolism , Glucose/deficiency , Aminooxyacetic Acid/pharmacology , Animals , Astrocytes/metabolism , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Brain Ischemia/pathology , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Cystathionine beta-Synthase/antagonists & inhibitors , Cystathionine beta-Synthase/genetics , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Humans , Hydrogen Sulfide/metabolism , Infarction, Middle Cerebral Artery , PC12 Cells , Rats , Rats, Sprague-Dawley
7.
Medicine (Baltimore) ; 94(1): e297, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25569645

ABSTRACT

Markers of cardiac dysfunction such as amino terminal pro-brain natriuretic peptide (NTpro-BNP) and high sensitivity cardiac troponin T (hs-cTnT) may be associated with dementia. However, limited data exist on their association with either pre-dementia stages, that is, cognitive impairment no dementia (CIND), or the burden of cerebrovascular diseases (CeVD).We therefore, examined the association of these biomarkers of cardiac dysfunction with CeVD in both CIND and dementia.A case-control study, with cases recruited from memory clinics and controls from memory clinics and community. All subjects underwent collection of blood samples, neuropsychological assessment, and neuroimaging. Subjects were classified as CIND and dementia based on clinical criteria whilst significant CeVD was defined as the presence of cortical infarcts and/or more than 2 lacunes and/or confluent white matter lesions in two regions of brain on Age-Related White Matter Changes Scale.We included a total of 35 controls (mean age: 65.9 years), 78 CIND (mean age: 70.2 years) and 80 cases with dementia (mean age: 75.6 years). Plasma concentrations of hs-cTnT were associated significantly with CeVD in both CIND (odds ratios [OR]: 9.05; 95% confidence interval [CI]: 1.64-49.79) and dementia (OR: 16.89; 95%CI: 2.02-142.67). In addition, NTpro-BNP was associated with dementia with CeVD (OR: 7.74; 95%CI: 1.23-48.58). These associations were independent of other vascular risk factors.In this study, we showed that plasma NTproBNP and hs-cTnT are associated with dementia and CIND, only when accompanied by presence of CeVD.


Subject(s)
Cognitive Dysfunction/blood , Dementia/blood , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Troponin T/blood , Aged , Aged, 80 and over , Biomarkers/blood , Case-Control Studies , Cerebrovascular Disorders/blood , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...