Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Hum Gene Ther ; 34(15-16): 732-741, 2023 08.
Article in English | MEDLINE | ID: mdl-37433214

ABSTRACT

The study was designed to determine whether urocortin 2 (Ucn2) gene transfer is as safe and effective as metformin in insulin-resistant mice. Four groups of insulin-resistant db/db mice and a nondiabetic group were studied: (1) metformin; (2) Ucn2 gene transfer; (3) metformin + Ucn2 gene transfer; (4) saline; and (5) nondiabetic mice. After completion of the 15-week protocol, glucose disposal was quantified, safety assessed, and gene expression documented. Ucn2 gene transfer was superior to metformin, providing reductions in fasting glucose and glycated hemoglobin and enhanced glucose tolerance. The combination of metformin + Ucn2 gene transfer provided no better glucose control than Ucn2 gene transfer alone and was not associated with hypoglycemia. Metformin alone, Ucn2 gene transfer alone, and metformin + Ucn2 gene transfer together reduced fatty infiltration of the liver. Serum alanine transaminase concentration was elevated in all db/db groups (vs. nondiabetic controls), but the metformin + Ucn2 gene transfer combined group had the lowest alanine transaminase levels. No group differences in fibrosis were detected. In a hepatoma cell line, activation of AMP kinase showed a rank order of combined metformin + Ucn2 peptide > Ucn2 peptide > metformin. We conclude (1) The combination of metformin + Ucn2 gene transfer does not result in hypoglycemia. (2) Ucn2 gene transfer alone provides superior glucose disposal versus metformin alone. (3) The combination of Ucn2 gene transfer and metformin is safe and has additive effects in reducing serum alanine transaminase concentration, activating AMP kinase activity, and increasing Ucn2 expression, but is no more efficacious than Ucn2 gene transfer alone in reducing hyperglycemia. These data indicate that Ucn2 gene transfer is more effective than metformin in the db/db model of insulin resistance and combined treatment with metformin + Ucn2 gene transfer appears to have favorable effects on liver function and Ucn2 expression.


Subject(s)
Hypoglycemia , Metformin , Mice , Animals , Glucose/metabolism , Insulin/genetics , Metformin/pharmacology , Urocortins/genetics , Urocortins/pharmacology , Adenylate Kinase , Alanine Transaminase
2.
Hum Gene Ther ; 33(19-20): 1091-1100, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36053712

ABSTRACT

We used transverse aortic constriction (TAC) in mice to test the hypothesis that urocortin 2 (Ucn2) gene transfer would increase left ventricular (LV) systolic and diastolic function in the pressure-stressed LV. Three groups were studied: (1) control mice (no TAC); (2) mice that received saline 6 weeks after TAC; and (3) mice that received Ucn2 gene transfer 6 weeks after TAC, using adeno-associated virus 8 encoding murine Ucn2 (AAV8.mUcn2; 2 × 1013 genome copies (gc)/kg, i.v. per mouse). Echocardiography was performed 6 and 12 weeks after TAC. In terminal studies 12 weeks after TAC, rates of LV pressure development and decay and Tau were measured, and LV cardiac myocytes (CMs) were isolated and cytosolic Ca2+ transients and sarcomere shortening rates recorded. Reverse transcription polymerase chain reaction and immunoblotting were used to measure key proteins in LV samples. A CM cell line (HL-1) was used to explore mechanisms. Concentric LV hypertrophy was evident on echocardiography 6 weeks after TAC. Twelve weeks after TAC, LV ejection fraction (EF) was higher in mice that received Ucn2 gene transfer (TAC-saline: 65% ± 3%; TAC-Ucn2: 75% ± 2%; p = 0.01), as was LV peak +dP/dt (1.9-fold increase; p = 0.001) and LV peak -dP/dt (1.7-fold increase; p = 0.017). Tau was more rapid (23% reduction, p = 0.02), indicating improved diastolic function. The peak rates of sarcomere shortening (p = 0.002) and lengthening (p = 0.002) were higher in CMs from TAC-Ucn2 mice, and Tau was reduced (p = 0.001). LV (Ser-16) phosphorylation of phospholamban (PLB) was increased in TAC-Ucn2 mice (p = 0.025), and also was increased in HL-1 cells treated with angiotensin II to induce hypertrophy and incubated with Ucn2 peptide (p = 0.001). Ucn2 gene transfer in TAC-induced heart failure with preserved ejection fraction increased cardiac function in the intact LV and provided corresponding benefits in CMs isolated from study animals, including increased myofilament Ca2+ sensitivity during contraction. The mechanism includes enhanced CM Ca2+ handling associated with increased (Ser-16)-PLB.


Subject(s)
Angiotensin II , Urocortins , Mice , Animals , Urocortins/genetics , Urocortins/metabolism , Ventricular Pressure , Genetic Therapy , Ventricular Function, Left/genetics , Hypertrophy , Mice, Inbred C57BL
3.
Mol Ther Methods Clin Dev ; 17: 220-233, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-31970200

ABSTRACT

Type 1 diabetes affects 20 million patients worldwide. Insulin is the primary and commonly the sole therapy for type 1 diabetes. However, only a minority of patients attain the targeted glucose control and reduced adverse events. We tested urocortin 2 gene transfer as single-agent therapy for insulin deficiency using two mouse models. Urocortin 2 gene transfer reduced blood glucose for months after a single intravenous injection, through increased skeletal muscle insulin sensitivity, increased insulin release in response to glucose stimulation, and increased plasma insulin levels before and during euglycemic clamp. The combined increases in both insulin availability and sensitivity resulted in improved glycemic indices-events that were not anticipated in these insulin-deficient models. In addition, urocortin 2 gene transfer reduced ocular manifestations of long-standing insulin deficiency such as vascular leak and improved retinal function. Finally, mortality was reduced by urocortin 2 gene transfer. The mechanisms for these beneficial effects included increased activities of AMP-activated protein kinase and Akt (protein kinase B) in skeletal muscle, increased skeletal muscle glucose uptake, and increased insulin release. These data suggest that urocortin 2 gene transfer may be a viable therapy for new onset type 1 diabetes and might reduce insulin needs in later stage disease.

4.
Mol Ther ; 28(1): 180-188, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31676153

ABSTRACT

Prevalence of left ventricular (LV) systolic and diastolic dysfunction increases with aging. We previously reported that urocortin 2 (Ucn2) gene transfer increases heart function in mice with heart failure with reduced ejection fraction. Here, we test the hypotheses that (1) Ucn2 gene transfer will increase LV function in aged mice and that (2) Ucn2 gene transfer given in early life will prevent age-related LV dysfunction. Nineteen-month-old (treatment study) and 3-month-old (prevention study) mice received Ucn2 gene transfer or saline. LV function was examined 3-4 months (treatment study) or 20 months (prevention study) after Ucn2 gene transfer or saline injection. In both the treatment and prevention strategies, Ucn2 gene transfer increased ejection fraction, reduced LV volume, increased LV peak -dP/dt and peak +dP/dt, and reduced global longitudinal strain. Ucn2 gene transfer-in both treatment and prevention strategies-was associated with higher levels of LV SERCA2a protein, reduced phosphorylation of LV CaMKIIa, and reduced LV α-skeletal actin mRNA expression (reflecting reduced cardiac stress). In conclusion, Ucn2 gene transfer restores normal cardiac function in mice with age-related LV dysfunction and prevents development of LV dysfunction.


Subject(s)
Aging , Corticotropin-Releasing Hormone/genetics , Gene Transfer Techniques , Genetic Therapy/methods , Urocortins/genetics , Ventricular Dysfunction, Left/prevention & control , Ventricular Dysfunction, Left/therapy , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Corticotropin-Releasing Hormone/blood , Female , Genetic Vectors/administration & dosage , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Stroke Volume , Urocortins/blood , Ventricular Function, Left/genetics
5.
PLoS One ; 14(12): e0224428, 2019.
Article in English | MEDLINE | ID: mdl-31790421

ABSTRACT

INTRODUCTION: Urocortin 2 (Ucn2) is a 38-amino acid peptide of the corticotropin-releasing factor family. Intravenous (IV) delivery of an adeno-associated virus vector serotype 8 encoding Ucn2 (AAV8.Ucn2) increases insulin sensitivity and glucose disposal in mice with insulin resistance. OBJECTIVE: To determine the effects of Ucn2 on liver metabolome. METHODS: Six-week-old C57BL6 mice were divided into normal chow (CHOW)-fed and high fat diet (HFD)-fed groups. The animals received saline, AAV8 encoding no gene (AAV8.Empt) or AAV8.Ucn2 (2x1013 genome copy/kg, IV injection). Livers were isolated from CHOW-fed and HFD-fed mice and analyzed by untargeted metabolomics. Group differences were statistically analyzed. RESULTS: In CHOW-fed mice, AAV8.Ucn2 gene transfer (vs. saline) altered the metabolites in glycolysis, pentose phosphate, glycogen synthesis, glycogenolysis, and choline-folate-methionine signaling pathways. In addition, AAV8.Ucn2 gene transfer increased amino acids and peptides, which were associated with reduced protein synthesis. In insulin resistant (HFD-induced) mice, HFD (vs CHOW) altered 448 (112 increased and 336 decreased) metabolites and AAV8.Ucn2 altered 239 metabolites (124 increased and 115 reduced) in multiple pathways. There are 61 metabolites in 5 super pathways showed interactions between diet and AAV8.Ucn2 treatment. Among them, AAV8.Ucn2 gene transfer reversed HFD effects on 13 metabolites. Finally, plasma Ucn2 effects were determined using a 3-group comparison of HFD-fed mice that received AAV8.Ucn2, AAV.Empt or saline, where 18 metabolites that altered by HFD (15 increased and 3 decreased), but restored levels to that seen in CHOW-fed mice by increased plasma Ucn2. CONCLUSIONS: Metabolomics study revealed that AAV8.Ucn2 gene transfer, through increased plasma Ucn2, provided counter-HFD effects in restoring hepatic metabolites to normal levels, which could be the underlying mechanisms for Ucn2 effects on increasing glucose disposal and reducing insulin assistance.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Insulin Resistance/genetics , Liver/metabolism , Urocortins/genetics , Animals , Genetic Vectors/genetics , Glucose/metabolism , Homeostasis/genetics , Male , Mice , Mice, Inbred C57BL
6.
Hum Gene Ther ; 30(6): 682-692, 2019 06.
Article in English | MEDLINE | ID: mdl-30638074

ABSTRACT

A fusion protein (C1C2) constructed by fusing the intracellular C1 and C2 segments of adenylyl cyclase type 6 (AC6) retains beneficial effects of AC6 expression, without increasing cyclic adenosine monophosphate generation. The effects of cardiac-directed C1C2 expression in pressure overload is unknown. Left ventricular (LV) pressure overload was induced by transverse aortic constriction (TAC) in C1C2 mice and in transgene negative (TG-) mice. Four weeks after TAC, LV systolic function and diastolic function were measured, and Ca2+ handling was assessed. Four weeks after TAC, TG- animals showed reduced LV peak +dP/dt. LV peak +dP/dt in C1C2 mice was statistically indistinguishable from that of normal mice and was higher than that seen in TG- mice 4 weeks after TAC (p = 0.02), despite similar and substantial cardiac hypertrophy. In addition to higher LV peak +dP/dt in vivo, cardiac myocytes from C1C2 mice showed shorter time-to-peak Ca2+ transient amplitude (p = 0.002) and a reduced time constant of cytosolic Ca2+ decline (Tau; p = 0.003). Sarcomere shortening fraction (p < 0.03) and the rate of sarcomere shortening (p < 0.02) increased in C1C2 cardiac myocytes. Myofilament sensitivity to Ca2+ was increased in systole (p = 0.02) and diastole (p = 0.04) in C1C2 myocytes. These findings indicate enhanced Ca2+ handling associated with C1C2 expression. Favorable effects on Ca2+ handling and LV function were associated with increased LV SERCA2a protein content (p = 0.015) and reduced LV fibrosis (p = 0.008). Cardiac-directed C1C2 expression improves Ca2+ handling and increases LV contractile function in pressure overload. These data provide a rationale for further exploration of C1C2 gene transfer as a potential treatment for heart failure.


Subject(s)
Adenylyl Cyclases/genetics , Catalytic Domain/genetics , Gene Expression , Heart Failure/genetics , Heart Failure/physiopathology , Myocytes, Cardiac/metabolism , Protein Interaction Domains and Motifs/genetics , Adenylyl Cyclases/chemistry , Animals , Calcium/metabolism , Echocardiography , Female , Fibrosis , Heart Failure/diagnosis , Heart Function Tests , Male , Mice , Mice, Transgenic , Sarcomeres
7.
Hum Gene Ther ; 30(6): 693-701, 2019 06.
Article in English | MEDLINE | ID: mdl-30648430

ABSTRACT

Diabetes mellitus is associated with increased risk of heart failure. It has been previously demonstrated in mice that a single injection of adeno-associated virus 8 encoding urocortin 2 (AAV8.UCn2) increases glucose disposal in models of insulin resistance and improves the function of the failing heart. The present study tested the hypothesis that UCn2 gene transfer would reduce diabetes-related left ventricular (LV) dysfunction. Eight-week-old C57BL6 male mice were fed a Western diet (WD; 45% fat, 35% carbohydrate) for 40 weeks. At week 30, they received saline or AAV8.UCn2 (2 × 1013 genome copies/kg) via intravenous injection. Ten weeks after gene transfer, fasting blood glucose, glucose tolerance, and cardiac function were measured via echocardiography and in vivo measurement of LV contractile function, and the results were compared to those of mice fed normal chow (NC; 10% fat; 70% carbohydrate). The contents of key LV signaling proteins were also measured to probe mechanisms. WD increased 12 h fasting glucose (WD: 190 ± 11 mg/dL, n = 8; NC: 105 ± 12 mg/dL, n = 7; p = 0.0004). WD tended to reduce LV peak +dP/dt (p = 0.08) and LV peak -dP/dt (p = 0.05). LV ejection fraction was unchanged. Among WD-fed mice, UCn2 gene transfer reduced 12 h fasting glucose (WD-UCn2: 149 ± 6 mg/dL, n = 8; WD-Saline: 190 ± 11 mg/dL, n = 8; p = 0.012), increased LV peak +dP/dt (p < 0.001) and LV peak -dP/dt (p = 0.013), and reduced Tau (p < 0.02), indicating beneficial effects on systolic and diastolic LV function. In addition, among WD-fed mice, UCn2 gene transfer increased LV ejection fraction (p < 0.005) and the velocity of circumferential fiber shortening (p = 0.0005). Finally, a reduction was seen in fatty infiltration of the liver in WD-fed mice that had received UCn2 gene transfer. LV samples from WD-UCn2 mice showed increased phosphorylation of the protein kinase A catalytic domain (p = 0.03). In conclusion, UCn2 gene transfer increased LV systolic and diastolic function and reduced blood glucose in mice with diabetes-related LV dysfunction, indicating that UCn2 gene transfer may be of potential therapeutic benefit.


Subject(s)
Corticotropin-Releasing Hormone/genetics , Diet, Western , Heart Failure/genetics , Myocardium/metabolism , Transduction, Genetic , Urocortins/genetics , Ventricular Function, Left/genetics , Animals , Corticotropin-Releasing Hormone/metabolism , Dependovirus/genetics , Echocardiography , Gene Transfer Techniques , Glucose , Heart Failure/diagnosis , Heart Failure/metabolism , Heart Failure/physiopathology , Homeostasis , Mice , Mice, Transgenic , Signal Transduction , Urocortins/metabolism
8.
Hum Gene Ther ; 30(1): 10-20, 2019 01.
Article in English | MEDLINE | ID: mdl-30003813

ABSTRACT

Peptide infusions of peptides the corticotropin releasing factor family, including urocortin 2, stresscopin, and urocortin 3 (UCn3), have favorable acute effects in clinical heart failure (HF), but their short half-lives make them unsuitable for chronic therapy. This study asked whether UCn3 gene transfer, which provides sustained elevation of plasma UCn3 levels, increases the function of the failing heart. HF was induced by transmural left ventricular (LV) cryoinjury in mice. LV function was assessed 3 weeks later by echocardiography. Those with ejection fractions (EF) <40% received intravenous saline or intravenous adeno-associated virus type-8 encoding murine UCn3 (AAV8.mUCn3; 1.9 × 1013 genome copies/kg). Five weeks after randomization, repeat echocardiography, assessment of LV function (+dP/dt, -dP/dt), and quantification of Ca2+ transients and sarcomere shortening in isolated cardiac myocytes were conducted, and assessment of LV Ca2+ handling and stress proteins was performed. Three weeks after myocardial infarction, prior to treatment, EFs were reduced (mean 31%, from 63% in sham-operated animals). Mice randomized to receive UCn3 gene transfer showed increased plasma UCn3 (from 0.1 ± 0.01 ng/mL in the saline group to 5.6 ± 1.1 ng/mL; n = 12 each group; p < 0.0001). Compared to mice that received saline, UCn3 gene transfer was associated with higher values for EF (p = 0.0006); LV +dP/dt (p < 0.0001), and LV -dP/dt (p < 0.0001). Cardiac myocytes from mice that received UCn3 gene transfer showed higher peak Ca2+ transients (p = 0.0005), lower time constant of cytosolic Ca2+ decline (tau, p < 0.0001), and higher rates of sarcomere shortening (+dL/dt, p = 0.03) and lengthening (-dL/dt, p = 0.04). LV samples from mice that received UCn3 gene transfer contained higher levels of SERCA2a (p = 0.0004 vs. HF) and increased amounts of phosphorylated troponin I (p = 0.04 vs. HF). UCn3 gene transfer is associated with improved Ca2+ handling and LV function in mice with HF and reduced EF.


Subject(s)
Gene Expression , Gene Transfer Techniques , Genetic Therapy , Heart Failure/genetics , Heart Failure/therapy , Transgenes , Urocortins/genetics , Animals , Apoptosis , Biomarkers , Calcium/metabolism , Dependovirus/genetics , Disease Models, Animal , Echocardiography , Female , Fibrosis , Gene Order , Genetic Vectors/genetics , Heart Failure/diagnosis , Male , Mice , Myocytes, Cardiac/metabolism , Transduction, Genetic , Ventricular Function, Left/genetics
9.
JACC Basic Transl Sci ; 3(2): 249-264, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30062211

ABSTRACT

UCn2 and UCn3 peptides have recently been infused to treat patients with heart failure (HF) but are limited by their short half-lives. A 1-time intravenous injection of virus vectors encoding UCn2 or UCn3 provided sustained increases in plasma concentrations of the peptides. This was associated with increases in both systolic and diastolic left ventricular (LV) function, mediated by increased LV SERCA2a expression and Ca2+ handling. UCn2, but not UCn3, gene transfer reduced fasting glucose and increased glucose disposal. These findings support UCn2 and UCn3 gene transfer as potential treatments for HF and indicate that UCn2 may be an optimal selection in patients with diabetes and HF.

10.
PLoS One ; 12(8): e0181282, 2017.
Article in English | MEDLINE | ID: mdl-28767701

ABSTRACT

OBJECTIVES: Increased expression of adenylyl cyclase type 6 (AC6) has beneficial effects on the heart through cyclic adenosine monophosphate (cAMP)-dependent and cAMP-independent pathways. We previously generated a catalytically inactive mutant of AC6 (AC6mut) that has an attenuated response to ß-adrenergic receptor stimulation, and, consequently, exhibits reduced myocardial cAMP generation. In the current study we test the hypothesis that cardiac-directed expression of AC6mut would protect the heart from sustained ß-adrenergic receptor stimulation, a condition frequently encountered in patients with heart failure. METHODS AND RESULTS: AC6mut mice and transgene negative siblings received osmotic mini-pumps to provide continuous isoproterenol infusion for seven days. Isoproterenol infusion caused deleterious effects that were attenuated by cardiac-directed AC6mut expression. Both groups showed reduced left ventricular (LV) ejection fraction, but the reduction was less in AC6mut mice (p = 0.047). In addition, AC6mut mice showed superior left ventricular function, manifested by higher values for LV peak +dP/dt (p = 0.03), LV peak -dP/dt (p = 0.008), end-systolic pressure-volume relationship (p = 0.003) and cardiac output (p<0.03). LV samples of AC6mut mice had more sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) protein (p<0.01), which likely contributed to better LV function. AC6mut mice had lower rates of cardiac myocyte apoptosis (p = 0.016), reduced caspase 3/7 activity (p = 0.012) and increased B-cell lymphoma 2 (Bcl2) expression (p = 0.0001). CONCLUSION: Mice with cardiac-directed AC6mut expression weathered the deleterious effects of continuous isoproterenol infusion better than control mice, indicating cardiac protection.


Subject(s)
Adenylyl Cyclases/genetics , Adrenergic beta-Agonists/administration & dosage , Isoproterenol/administration & dosage , Mutation , Myocytes, Cardiac/cytology , Ventricular Function, Left/drug effects , Adenylyl Cyclases/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Apoptosis , Caspases/genetics , Caspases/metabolism , Gene Expression Regulation/drug effects , Isoproterenol/pharmacology , Male , Mice , Mice, Transgenic , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Stroke Volume/drug effects
11.
Exp Physiol ; 102(3): 347-353, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27897352

ABSTRACT

NEW FINDINGS: What is the central question of this study? Non-invasive, quantitative methods to assess right cardiac function in mice with pulmonary hypertension have not been demonstrated. What is the main finding and its importance? This study shows the potential of magnetic resonance imaging to estimate right ventricular ejection fraction and measure spatial, dynamic changes in cardiac structure in the Sugen 5416/hypoxia mouse model of pulmonary hypertension. Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery pressures and right heart failure. Mouse models of PAH are instrumental in understanding the disease pathophysiology. However, few methods are available to evaluate right cardiac function in small animals. In this study, magnetic resonance imaging was used to measure in vivo cardiac dimensions in the Sugen 5416/hypoxia mouse model. Pulmonary hypertension (PH) was induced in C57BL/6 mice by 3 weeks of exposure to 10% oxygen and vascular endothelial growth factor receptor inhibition (20 mg kg-1 SU5416). Control mice were housed in room air and received vehicle (DMSO). Right ventricular pressures were recorded with a pressure-conductance transducer. Short-axis contiguous 1-mm-thick slices were acquired through the heart and great vessels using a fast low-angle shot (FLASH)-cine sequence. Thirteen images were collected throughout each cardiac cycle. Right ventricular systolic pressure was elevated in PH mice (23.6 ± 6 versus 41.0 ± 11 mmHg, control versus PH, respectively; P < 0.001, n = 5-11). Right ventricular wall thickness was greater in PH than in control mice at end diastole (0.30 ± 0.05 versus 0.48 ± 0.06 mm, control versus PH, respectively; P < 0.01, n = 6), but measurements were not different at end systole (control versus PH, 0.59 ± 0.11 versus 0.70 ± 0.11 mm, respectively). Right ventricular ejection fraction was decreased in PH mice (72 ± 3 versus 58 ± 5%, control versus PH, respectively; P < 0.04, n = 6). These data demonstrate that magnetic resonance imaging is a precise method to monitor right ventricular remodelling and cardiac output longitudinally in mouse models of PH.


Subject(s)
Hypertension, Pulmonary/physiopathology , Hypoxia/physiopathology , Animals , Blood Pressure/physiology , Cardiac Output/physiology , Diastole/physiology , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Magnetic Resonance Imaging/methods , Male , Mice , Mice, Inbred C57BL , Pulmonary Artery/metabolism , Stroke Volume/physiology , Systole/physiology , Vascular Endothelial Growth Factor A/metabolism , Ventricular Function, Right/physiology , Ventricular Remodeling/physiology
12.
JCI Insight ; 1(15): e88322, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27699250

ABSTRACT

Using mice rendered insulin resistant with high fat diets (HFD), we examined blood glucose levels and insulin resistance after i.v. delivery of an adeno-associated virus type 8 encoding murine urocortin 2 (AAV8.UCn2). A single i.v. injection of AAV8.UCn2-normalized blood glucose and glucose disposal within weeks, an effect that lasted for months. Hyperinsulinemic-euglycemic clamps showed reduced plasma insulin, increased glucose disposal rates, and increased insulin sensitivity following UCn2 gene transfer. Mice with corticotropin-releasing hormone type 2-receptor deletion that were rendered insulin resistant by HFD showed no improvement in glucose disposal after UCn2 gene transfer, indicating that the effect requires UCn2's cognate receptor. We also demonstrated increased glucose disposal after UCn2 gene transfer in db/db mice, a second model of insulin resistance. UCn2 gene transfer reduced fatty infiltration of the liver in both models of insulin resistance. UCn2 increases Glut4 translocation to the plasma membrane in skeletal myotubes in a manner quantitatively similar to insulin, indicating a mechanism through which UCn2 operates to increase insulin sensitivity. UCn2 gene transfer, in a dose-dependent manner, is insulin sensitizing and effective for months after a single injection. These findings suggest a potential long-term therapy for clinical type-2 diabetes.


Subject(s)
Genetic Therapy , Insulin Resistance , Urocortins/administration & dosage , Animals , Blood Glucose , Dependovirus , Female , Genetic Vectors , Male , Mice , Receptors, Corticotropin-Releasing Hormone/deficiency , Receptors, Corticotropin-Releasing Hormone/genetics
13.
PLoS One ; 11(8): e0161536, 2016.
Article in English | MEDLINE | ID: mdl-27537778

ABSTRACT

Methods commonly used clinically to assess cardiac function in patients with heart failure include ejection fraction (EF), exercise treadmill testing (ETT), and symptom evaluation. Although these approaches are useful in evaluating patients with heart failure, there are at times substantial mismatches between individual assessments. For example, ETT results are often discordant with EF, and patients with minimal symptoms sometimes have surprisingly low EFs. To better define the relationship of these methods of assessment, we studied 56 patients with heart failure with reduced EF (HFrEF) who underwent measurement of ETT duration, EF by echocardiography, quantitative symptom evaluation, and LV peak dP/dt (rate of left ventricular pressure development and decline, measured invasively). Correlations were determined among these four tests in order to assess the relationship of EF, ETT, and symptoms against LV peak dP/dt. In addition, we sought to determine whether EF, ETT, and symptoms correlated with each other. Overall, correlations were poor. Only 15 of 63 total correlations (24%) were significant (p < 0.05). EF correlated most closely with LV peak -dP/dt. Linear regression analysis indicated that EF, ETT, and symptoms taken together predicted LV peak dP/dt better than any one measure alone. We conclude that clinical tests used to assess LV function in patients with HFrEF may not be as accurate or correlate as well as expected. All three clinical measures considered together may be the best representation of cardiac function in HFrEF patients currently available.


Subject(s)
Heart Failure/diagnosis , Echocardiography , Exercise Test , Female , Heart Failure/diagnostic imaging , Heart Failure/physiopathology , Heart Function Tests , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Stroke Volume
14.
JAMA Cardiol ; 1(2): 163-71, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27437887

ABSTRACT

IMPORTANCE: Gene transfer has rarely been tested in randomized clinical trials. OBJECTIVE: To evaluate the safety and efficacy of intracoronary delivery of adenovirus 5 encoding adenylyl cyclase 6 (Ad5.hAC6) in heart failure. DESIGN, SETTING, AND PARTICIPANTS: A randomized, double-blind, placebo-controlled, phase 2 clinical trial was conducted in US medical centers (randomization occurred from July 19, 2010, to October 30, 2014). Participants 18 to 80 years with symptomatic heart failure (ischemic and nonischemic) and an ejection fraction (EF) of 40% or less were screened; 86 individuals were enrolled, and 56 were randomized. Data analysis was of the intention-to-treat population. Participants underwent exercise testing and measurement of left ventricular EF (echocardiography) and then cardiac catheterization, where left ventricular pressure development (+dP/dt) and decline (-dP/dt) were recorded. Participants were randomized (3:1 ratio) to receive 1 of 5 doses of intracoronary Ad5.hAC6 or placebo. Participants underwent a second catheterization 4 weeks later for measurement of dP/dt. Exercise testing and EF were assessed 4 and 12 weeks after randomization. INTERVENTIONS: Intracoronary administration of Ad5.hAC6 (3.2 × 109 to 1012 virus particles) or placebo. MAIN OUTCOMES AND MEASURES: Primary end points included exercise duration and EF before and 4 and 12 weeks after randomization and peak rates of +dP/dt and -dP/dt before and 4 weeks after randomization. Fourteen placebo participants were compared (intention to treat) with 24 Ad5.hAC6 participants receiving the highest 2 doses (D4 + 5). RESULTS: Fifty-six individuals were randomized and monitored for up to 1 year. Forty-two participants (75%) received Ad5.hAC6 (mean [SE] age, 63 [1] years; EF, 30% [1%]), and 14 individuals (25%) received placebo (age, 62 [1] years; EF, 30% [2%]). Exercise duration showed no significant group differences (4 weeks, P = .27; 12 weeks, P = .47, respectively). The D4 + 5 participants had increased EF at 4 weeks (+6.0 [1.7] EF units; n = 21; P < .004), but not 12 weeks (+3.0 [2.4] EF units; n = 21; P = .16). Placebo participants showed no increase in EF at 4 weeks or 12 weeks. Exercise duration showed no between-group differences (4-week change from baseline: placebo, 27 [36] seconds; D4 + 5, 44 [25] seconds; P = .27; 12-week change from baseline: placebo, 44 [28] seconds; D4 + 5, 58 [29 seconds, P = .47). AC6 gene transfer increased basal left ventricular peak -dP/dt (4-week change from baseline: placebo, +93 [51] mm Hg/s; D4 + 5, -39 [33] mm Hg/s; placebo [n = 21]; P < .03); AC6 did not increase arrhythmias. The admission rate for patients with heart failure was 9.5% (4 of 42) in the AC6 group and 28.6% (4 of 14) in the placebo group (relative risk, 0.33 [95% CI, 0.08-1.36]; P = .10). CONCLUSIONS AND RELEVANCE: AC6 gene transfer safely increased LV function beyond standard heart failure therapy, attainable with one-time administration. Larger trials are warranted. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00787059.


Subject(s)
Adenoviridae/genetics , Adenylyl Cyclases/administration & dosage , Gene Transfer Techniques/trends , Genetic Therapy/methods , Heart Failure/diagnosis , Stroke Volume/drug effects , Ventricular Function, Left/drug effects , Adenylyl Cyclases/therapeutic use , Aged , Cardiac Catheterization/methods , Echocardiography , Exercise Test/methods , Female , Heart Failure/diagnostic imaging , Heart Failure/genetics , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Male , Middle Aged , Patient Admission/statistics & numerical data , Treatment Outcome , United States/epidemiology
15.
JACC Basic Transl Sci ; 1(7): 617-629, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28670631

ABSTRACT

OBJECTIVE: To test the hypothesis that cardiac-directed expression of the cytoplasmic domains of adenylyl cyclase-6 (AC6) would have beneficial effects on the heart. BACKGROUND: Eliminating the two transmembrane domains of AC6 yields a protein with an intact catalytic domain that is disengaged from membrane-associated ß-adrenergic receptor stimulation, but with enhanced propensity for intracellular interactions. METHODS: We constructed a peptide of the C1 and C2 segments of AC6 (C1C2), expressed C1C2 in an adenovirus vector and generated transgenic lines with cardiac-directed C1C2 expression, which underwent sustained isoproterenol (Iso) infusion. RESULTS: Gene transfer of C1C2 in cardiac myocytes showed reduced cAMP generation in response to Iso-stimulation. C1C2 transgenic mice had normal left ventricular (LV) structure and function. LV samples from C1C2 mice showed diminished Iso-stimulated cAMP generation but normal LV contractile responses, suggesting a compensatory mechanism. Cardiac myocytes from C1C2 mice showed increased Iso-stimulated Ca2+ release and reduced time to peak Ca2+ release. After 7 days Iso infusion, control mice tended to show reduced LV function, but C1C2 mice showed increases in both LV peak +dP/dt and peak -dP/dt indicating enhanced LV systolic and diastolic function. LV from C1C2 mice showed a 2.6-fold increase in SERCA2a protein, and cardiac myocytes showed increased Ca2+ release, reduced time to peak Ca2+ release and reduced Tau. CONCLUSIONS: In C1C2 mice, sustained isoproterenol infusion increases rather than decreases LV function. Reduced cAMP generation and resistance to catecholamine cardiomyopathy are attractive features of this novel AC-related protein.

16.
Hum Gene Ther ; 26(6): 347-56, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25760560

ABSTRACT

Urocortin-2 (UCn2) peptide infusion increases cardiac function in patients with heart failure, but chronic peptide infusion is cumbersome, is costly, and provides only short-term benefits. Gene transfer would circumvent these shortcomings. We previously showed that a single intravenous (IV) injection of AAV8.UCn2 increases plasma UCn2 and left ventricular (LV) systolic and diastolic function for at least 7 months in normal mice. Here we test the hypothesis that IV delivery of AAV8.UCn2 increases function of the failing heart. Myocardial infarction (MI, by coronary ligation) was used to induce heart failure, which was assessed by echocardiography 3 weeks after MI. Mice with LV ejection fraction (EF) <25% received IV delivery of AAV8.UCn2 (5×10(11) gc) or saline, and 5 weeks later echocardiography showed increased LV EF in mice that received UCn2 gene transfer (p=0.01). In vivo physiological studies showed a 2-fold increase in peak rate of LV pressure development (LV +dP/dt; p<0.0001) and a 1.6-fold increase in peak rate of LV pressure decay (LV -dP/dt; p=0.0007), indicating increased LV systolic and diastolic function in treated mice. UCn2 gene transfer was associated with increased peak systolic Ca(2+) transient amplitude and rate of Ca(2+) decline and increased SERCA2a expression. In addition, UCn2 gene transfer reduced Thr286 phosphorylation of Cam kinase II, and increased expression of cardiac myosin light chain kinase, findings that would be anticipated to increase function of the failing heart. We conclude that a single IV injection of AAV8.UCn2 increases function of the failing heart. The simplicity of IV injection of a vector encoding a gene with beneficial paracrine effects to increase cardiac function is an attractive potential clinical strategy.


Subject(s)
Corticotropin-Releasing Hormone/genetics , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Heart Failure/therapy , Urocortins/genetics , Animals , Blood Pressure/genetics , Calcium/metabolism , Corticotropin-Releasing Hormone/administration & dosage , Corticotropin-Releasing Hormone/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Electrocardiography , Genetic Vectors/genetics , Heart Failure/physiopathology , Heart Rate/genetics , Humans , Injections, Intravenous , Liver/pathology , Male , Mice, Inbred C57BL , Urocortins/administration & dosage , Urocortins/metabolism , Ventricular Function, Left/genetics
17.
Nat Commun ; 5: 3022, 2014.
Article in English | MEDLINE | ID: mdl-24451680

ABSTRACT

The polypterids (bichirs and ropefish) are extant basal actinopterygian (ray-finned) fishes that breathe air and share similarities with extant lobe-finned sarcopterygians (lungfishes and tetrapods) in lung structure. They are also similar to some fossil sarcopterygians, including stem tetrapods, in having large paired openings (spiracles) on top of their head. The role of spiracles in polypterid respiration has been unclear, with early reports suggesting that polypterids could inhale air through the spiracles, while later reports have largely dismissed such observations. Here we resolve the 100-year-old mystery by presenting structural, behavioural, video, kinematic and pressure data that show spiracle-mediated aspiration accounts for up to 93% of all air breaths in four species of Polypterus. Similarity in the size and position of polypterid spiracles with those of some stem tetrapods suggests that spiracular air breathing may have been an important respiratory strategy during the fish-tetrapod transition from water to land.


Subject(s)
Biological Evolution , Fishes , Fossils , Respiration , Animals
18.
J Clin Invest ; 123(10): 4294-308, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24091324

ABSTRACT

Ischemic damage is recognized to cause cardiomyocyte (CM) death and myocardial dysfunction, but the role of cell-matrix interactions and integrins in this process has not been extensively studied. Expression of α7ß1D integrin, the dominant integrin in normal adult CMs, increases during ischemia/reperfusion (I/R), while deficiency of ß1 integrins increases ischemic damage. We hypothesized that the forced overexpression of integrins on the CM would offer protection from I/R injury. Tg mice with CM-specific overexpression of integrin α7ß1D exposed to I/R had a substantial reduction in infarct size compared with that of α5ß1D-overexpressing mice and WT littermate controls. Using isolated CMs, we found that α7ß1D preserved mitochondrial membrane potential during hypoxia/reoxygenation (H/R) injury via inhibition of mitochondrial Ca2+ overload but did not alter H/R effects on oxidative stress. Therefore, we assessed Ca2+ handling proteins in the CM and found that ß1D integrin colocalized with ryanodine receptor 2 (RyR2) in CM T-tubules, complexed with RyR2 in human and rat heart, and specifically bound to RyR2 amino acids 165-175. Integrins stabilized the RyR2 interdomain interaction, and this stabilization required integrin receptor binding to its ECM ligand. These data suggest that α7ß1D integrin modifies Ca2+ regulatory pathways and offers a means to protect the myocardium from ischemic injury.


Subject(s)
Integrins/metabolism , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Amino Acid Sequence , Animals , Calcium/metabolism , Cell Hypoxia , Cells, Cultured , Humans , Integrins/chemistry , Male , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Myocardial Ischemia/pathology , Myocardial Reperfusion Injury/pathology , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Protein Stability , Protein Subunits/metabolism , Rats , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism
19.
Hum Gene Ther ; 24(9): 777-85, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23931341

ABSTRACT

Urocortin-2 (UCn2) peptide infusion increases cardiac function in patients with heart failure, but chronic peptide infusion is cumbersome, costly, and provides only short-term benefits. Gene transfer would circumvent these shortcomings. Here we ask whether a single intravenous injection of adeno-associated virus type 8 encoding murine urocortin-2 (AAV8.UCn2) could provide long-term elevation in plasma UCn2 levels and increased left ventricular (LV) function. Normal mice received AAV8.UCn2 (5×10¹¹ genome copies, intravenous). Plasma UCn2 increased 15-fold 6 weeks and >11-fold 7 months after delivery. AAV8 DNA and UCn2 mRNA expression was persistent in LV and liver up to 7 months after a single intravenous injection of AAV8.UCn2. Physiological studies conducted both in situ and ex vivo showed increases in LV +dP/dt and in LV -dP/dt, findings that endured unchanged for 7 months. SERCA2a mRNA and protein expression was increased in LV samples and Ca²âº transient studies showed an increased rate of Ca²âº decline in cardiac myocytes from mice that had received UCn2 gene transfer. We conclude that a single intravenous injection of AAV8.UCn2 increases plasma UCn2 and increases LV systolic and diastolic function for at least 7 months. The simplicity of intravenous injection of a long-term expression vector encoding a gene with paracrine activity to increase cardiac function is a potentially attractive strategy in clinical settings. Future studies will determine the usefulness of this approach in the treatment of heart failure.


Subject(s)
Corticotropin-Releasing Hormone/genetics , Dependovirus/genetics , Genetic Therapy/methods , Heart Failure/therapy , Urocortins/genetics , Ventricular Function, Left/genetics , Animals , Calcium , Corticotropin-Releasing Hormone/blood , Corticotropin-Releasing Hormone/metabolism , Gene Transfer Techniques , Genetic Vectors/genetics , Heart Ventricles/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , RNA, Messenger/biosynthesis , Sarcoplasmic Reticulum Calcium-Transporting ATPases/biosynthesis , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Urocortins/blood , Urocortins/metabolism
20.
J Mol Cell Cardiol ; 60: 60-7, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23587598

ABSTRACT

Sustained ß-adrenergic receptor stimulation is associated with cardiomyopathy, an affect thought to result from cAMP-associated cardiac injury. Using a murine line with adenylyl cyclase 6 gene deletion (AC6KO), we tested the hypothesis that AC6 deletion, by limiting cAMP production, would attenuate cardiomyopathy in the setting of sustained ß-adrenergic receptor stimulation. During 7d isoproterenol infusion, there was unexpected higher mortality in AC6KO mice compared to wild type control mice (p<0.0001). However, left ventricular function was similarly impaired in isoproterenol-infused control and AC6KO mice. There were no group differences in left ventricular hypertrophy, apoptosis, and fibrosis. Telemetric electrocardiography showed progressive prolongation of PR interval (p<0.0001), QRS duration (p<0.0005), and QTc (p<0.0001), as well as reduction in heart rate (p<0.0001), in AC6KO mice during isoproterenol infusion. These defective electrophysiological properties in isoproterenol-infused AC6KO mice were associated with decreased longitudinal ventricular conduction velocity (p<0.05) and reduced phosphorylation of connexin 43 at S368 in left ventricular samples (p=0.006). Taken together, these data demonstrate that limiting cAMP production does not prevent sustained ß-adrenergic receptor stimulation-induced cardiomyopathy. Moreover, AC6 deletion impairs electrophysiological properties and increases mortality during sustained ß-adrenergic receptor stimulation. Decreased connexin 43 phosphorylation and impaired ventricular conduction may be of mechanistic importance for the defective electrophysiological properties.


Subject(s)
Adenylyl Cyclases/metabolism , Adrenergic beta-Agonists/adverse effects , Hypertrophy, Left Ventricular/metabolism , Isoproterenol/adverse effects , Receptors, Adrenergic, beta/metabolism , Ventricular Function, Left/drug effects , Adenylyl Cyclases/genetics , Adrenergic beta-Agonists/pharmacology , Animals , Connexin 43/genetics , Connexin 43/metabolism , Cyclic AMP/genetics , Cyclic AMP/metabolism , Gene Deletion , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Isoproterenol/pharmacology , Mice , Mice, Knockout , Phosphorylation/genetics , Phosphorylation/physiology , Receptors, Adrenergic, beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...