Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Neurobiol Dis ; 189: 106358, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977434

ABSTRACT

The raphe nuclei, the primary resource of forebrain 5-HT, play an important but heterogeneous role in regulating subcortical excitabilities. Fundamental circuit organizations of different median raphe (MR) subsystems are far from completely understood. In the present study, using cell-specific viral tracing, Ca2+ fiber photometry and epilepsy model, we map out the forebrain efferent and afferent of different MR Pet+ subpopulations and their divergent roles in epilepsy. We found that PetMR neurons send both collateral and parallel innervations to different downstream regions through different subpopulations. Notably, CA3-projecting PetMR subpopulations are largely distinct from habenula (Hb)-projecting PetMR subpopulations in anatomical distribution and topological organization, while majority of the CA3-projecting PetMR subpopulations are overlapped with the medial septum (MS)-projecting PetMR subpopulations. Further, using Ca2+ fiber photometry, we monitor activities of PetMR neurons in hippocampal-kindling seizure, a classical epilepsy model with pathological mechanisms caused by excitation-inhibition imbalance. We found that soma activities of PetMR neurons are heterogeneous during different periods of generalized seizures. These divergent activities are contributed by different projection-defined PetMR subpopulations, manifesting as increased activities in CA3 but decreased activity in Hb resulting from their upstream differences. Together, our findings provide a novel framework of MR subsystems showing that projection-defined MR Pet+ subpopulations are topologically heterogenous with divergent circuit connections and are diversely implicated in seizures. This may help in the understanding of heterogeneous nature of MR 5-HTergic subsystems and the paradox roles of 5-HTergic systems in epilepsy.


Subject(s)
Epilepsy , Neurons , Humans , Neural Pathways/physiology , Neurons/physiology , Raphe Nuclei/physiology , Seizures/diagnostic imaging , Epilepsy/diagnostic imaging
2.
Acta Pharmacol Sin ; 44(12): 2376-2387, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37488426

ABSTRACT

Cognitive deficit is a common comorbidity in temporal lobe epilepsy (TLE) and is not well controlled by current therapeutics. How epileptic seizure affects cognitive performance remains largely unclear. In this study we investigated the role of subicular seizure-activated neurons in cognitive impairment in TLE. A bipolar electrode was implanted into hippocampal CA3 in male mice for kindling stimulation and EEG recording; a special promoter with enhanced synaptic activity-responsive element (E-SARE) was used to label seizure-activated neurons in the subiculum; the activity of subicular seizure-activated neurons was manipulated using chemogenetic approach; cognitive function was assessed in object location memory (OLM) and novel object recognition (NOR) tasks. We showed that chemogenetic inhibition of subicular seizure-activated neurons (mainly CaMKIIα+ glutamatergic neurons) alleviated seizure generalization and improved cognitive performance, but inhibition of seizure-activated GABAergic interneurons had no effect on seizure and cognition. For comparison, inhibition of the whole subicular CaMKIIα+ neuron impaired cognitive function in naïve mice in basal condition. Notably, chemogenetic inhibition of subicular seizure-activated neurons enhanced the recruitment of cognition-responsive c-fos+ neurons via increasing neural excitability during cognition tasks. Our results demonstrate that subicular seizure-activated neurons contribute to cognitive impairment in TLE, suggesting seizure-activated neurons as the potential therapeutic target to alleviate cognitive impairment in TLE.


Subject(s)
Cognitive Dysfunction , Epilepsy, Temporal Lobe , Male , Mice , Animals , Seizures , Neurons , Epilepsy, Temporal Lobe/psychology , Hippocampus , Cognition
3.
Signal Transduct Target Ther ; 8(1): 225, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37280192

ABSTRACT

Temporal lobe epilepsy (TLE), one common type of medically refractory epilepsy, is accompanied with altered adult-born dentate granule cells (abDGCs). However, the causal role of abDGCs in recurrent seizures of TLE is not fully understood. Here, taking advantage of optogenetic and chemogenetic tools to selectively manipulate abDGCs in a reversible manner, combined with Ca2+ fiber photometry, trans-synaptic viral tracing, in vivo/vitro electrophysiology approaches, we aimed to test the role of abDGCs born at different period of epileptogenic insult in later recurrent seizures in mouse TLE models. We found that abDGCs were functionally inhibited during recurrent seizures. Optogenetic activation of abDGCs significantly extended, while inhibition curtailed, the seizure duration. This seizure-modulating effect was attributed to specific abDGCs born at a critical early phase after kindled status, which experienced specific type of circuit re-organization. Further, abDGCs extended seizure duration via local excitatory circuit with early-born granule cells (ebDGCs). Repeated modulation of "abDGC-ebDGC" circuit may easily induce a change of synaptic plasticity, and achieve long-term anti-seizure effects in both kindling and kainic acid-induced TLE models. Together, we demonstrate that abDGCs born at a critical period of epileptogenic insult maintain seizure duration via local aberrant excitatory circuits, and inactivation of these aberrant circuits can long-termly alleviate severity of seizures. This provides a deeper and more comprehensive understanding of the potential pathological changes of abDGCs circuit and may be helpful for the precise treatment in TLE.


Subject(s)
Epilepsy, Temporal Lobe , Hippocampus , Mice , Animals , Neurons/physiology , Epilepsy, Temporal Lobe/genetics
4.
STAR Protoc ; 4(2): 102255, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37099430

ABSTRACT

Epileptic networks are characterized by two states, seizures or more prolonged interictal periods. Here, we present the procedure for labeling seizure-activated and interictal-activated neuronal ensembles in mouse hippocampal kindling model using an enhanced-synaptic-activity-responsive element. We describe the seizure model establishment, tamoxifen induction, electrical stimulation, and calcium signal recording of labeled ensembles. This protocol has demonstrated dissociated calcium activities in the two ensembles during focal seizure dynamics and can be applied to other animal models of epilepsy. For complete details on the use and execution of this protocol, please refer to Lai et al. (2022).1.

5.
Neurobiol Dis ; 177: 105999, 2023 02.
Article in English | MEDLINE | ID: mdl-36638892

ABSTRACT

Interictal electroencephalogram (EEG) patterns, including high-frequency oscillations (HFOs), interictal spikes (ISs), and slow wave activities (SWAs), are defined as specific oscillations between seizure events. These interictal oscillations reflect specific dynamic changes in network excitability and play various roles in epilepsy. In this review, we briefly describe the electrographic characteristics of HFOs, ISs, and SWAs in the interictal state, and discuss the underlying cellular and network mechanisms. We also summarize representative evidence from experimental and clinical epilepsy to address their critical roles in ictogenesis and epileptogenesis, indicating their potential as electrophysiological biomarkers of epilepsy. Importantly, we put forwards some perspectives for further research in the field.


Subject(s)
Epilepsy , Mental Disorders , Humans , Epilepsy/diagnosis , Electroencephalography , Seizures , Biomarkers
6.
Cell Rep ; 41(11): 111798, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516780

ABSTRACT

Epileptic networks are characterized as having two states, seizures or more prolonged interictal periods. However, cellular mechanisms underlying the contribution of interictal periods to ictal events remain unclear. Here, we use an activity-dependent labeling technique combined with genetically encoded effectors to characterize and manipulate neuronal ensembles recruited by focal seizures (FS-Ens) and interictal periods (IP-Ens) in piriform cortex, a region that plays a key role in seizure generation. Ca2+ activities and histological evidence reveal a disjointed correlation between the two ensembles during FS dynamics. Optogenetic activation of FS-Ens promotes further seizure development, while IP-Ens protects against it. Interestingly, both ensembles are functionally involved in generalized seizures (GS) due to circuit rearrangement. IP-Ens bidirectionally modulates FS but not GS by controlling coherence with hippocampus. This study indicates that the interictal state may represent a seizure-preventing environment, and the interictal-activated ensemble may serve as a potential therapeutic target for epilepsy.


Subject(s)
Epilepsy , Piriform Cortex , Humans , Electroencephalography , Seizures , Neurons/physiology
7.
Research (Wash D C) ; 2022: 9802382, 2022.
Article in English | MEDLINE | ID: mdl-36061821

ABSTRACT

Predatory hunting is an innate appetite-driven and evolutionarily conserved behavior essential for animal survival, integrating sequential behaviors including searching, pursuit, attack, retrieval, and ultimately consumption. Nevertheless, neural circuits underlying hunting behavior with different features remain largely unexplored. Here, we deciphered a novel function of lateral hypothalamus (LH) calcium/calmodulin-dependent protein kinase II α (CaMKIIα +) neurons in hunting behavior and uncovered upstream/downstream circuit basis. LH CaMKIIα + neurons bidirectionally modulate novelty-seeking behavior, predatory attack, and eating in hunting behavior. LH CaMKIIα + neurons integrate hunting-related novelty-seeking information from the medial preoptic area (MPOA) and project to the ventral periaqueductal gray (vPAG) to promote predatory eating. Our results demonstrate that LH CaMKIIα + neurons are the key hub that integrate MPOA-conveyed novelty-seeking signals and encode predatory eating in hunting behavior, which enriched the neuronal substrate of hunting behavior.

8.
Nat Commun ; 13(1): 5010, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008421

ABSTRACT

Epilepsy is considered a circuit-level dysfunction associated with imbalanced excitation-inhibition, it is therapeutically necessary to identify key brain regions and related circuits in epilepsy. The subiculum is an essential participant in epileptic seizures, but the circuit mechanism underlying its role remains largely elusive. Here we deconstruct the diversity of subicular circuits in a mouse model of epilepsy. We find that excitatory subicular pyramidal neurons heterogeneously control the generalization of hippocampal seizures by projecting to different downstream regions. Notably, anterior thalamus-projecting subicular neurons bidirectionally mediate seizures, while entorhinal cortex-projecting subicular neurons act oppositely in seizure modulation. These two subpopulations are structurally and functionally dissociable. An intrinsically enhanced hyperpolarization-activated current and robust bursting intensity in anterior thalamus-projecting neurons facilitate synaptic transmission, thus contributing to the generalization of hippocampal seizures. These results demonstrate that subicular circuits have diverse roles in epilepsy, suggesting the necessity to precisely target specific subicular circuits for effective treatment of epilepsy.


Subject(s)
Epilepsy , Hippocampus , Action Potentials/physiology , Animals , Hippocampus/physiology , Humans , Mice , Pyramidal Cells/physiology , Seizures
9.
iScience ; 25(5): 104218, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494226

ABSTRACT

Epilepsy is a circuit-level brain disorder characterized by hyperexcitatory seizures with unclear mechanisms. Here, we investigated the causal roles of calretinin (CR) neurons in the posterior intralaminar thalamic nucleus (PIL) in hippocampal seizures. Using c-fos mapping and calcium fiber photometry, we found that PIL CR neurons were activated during hippocampal seizures in a kindling model. Optogenetic activation of PIL CR neurons accelerated seizure development, whereas inhibition retarded seizure development. Further, viral-based circuit tracing verified that PIL CR neurons were long-range glutamatergic neurons, projecting toward various downstream regions. Interestingly, selective inhibition of PIL-lateral amygdala CR circuit attenuated seizure progression, whereas inhibition of PIL-zona incerta CR circuit presented an opposite effect. These results indicated that CR neurons in the PIL play separate roles in hippocampal seizures via distinct downstream circuits, which complements the pathogenic mechanisms of epilepsy and provides new insight for the precise medicine of epilepsy.

10.
CNS Neurosci Ther ; 27(8): 963-972, 2021 08.
Article in English | MEDLINE | ID: mdl-33955651

ABSTRACT

AIMS: Epilepsy, frequently comorbid with depression, easily develops drug resistance. Here, we investigated how dorsal raphe (DR) and its 5-HTergic neurons are implicated in epilepsy. METHODS: In mouse hippocampal kindling model, using immunochemistry, calcium fiber photometry, and optogenetics, we investigated the causal role of DR 5-HTergic neurons in seizure of temporal lobe epilepsy (TLE). Further, deep brain stimulation (DBS) of the DR with different frequencies was applied to test its effect on hippocampal seizure and depressive-like behavior. RESULTS: Number of c-fos+ neurons in the DR and calcium activities of DR 5-HTergic neurons were both increased during kindling-induced hippocampal seizures. Optogenetic inhibition, but not activation, of DR 5-HTergic neurons conspicuously retarded seizure acquisition specially during the late period. For clinical translation, 1-Hz-specific, but not 20-Hz or 100-Hz, DBS of the DR retarded the acquisition of hippocampal seizure. This therapeutic effect may be mediated by the inhibition of DR 5-HTergic neurons, as optogenetic activation of DR 5-HTergic neurons reversed the anti-seizure effects of 1-Hz DR DBS. However, DBS treatment had no effect on depressive-like behavior. CONCLUSION: Inhibition of hyperactivity of DR 5-HTergic neuron may present promising anti-seizure effect and the DR may be a potential DBS target for the therapy of TLE.


Subject(s)
Deep Brain Stimulation/methods , Dorsal Raphe Nucleus/metabolism , Hippocampus/metabolism , Neural Inhibition/physiology , Seizures/metabolism , Serotonergic Neurons/metabolism , Animals , Dorsal Raphe Nucleus/chemistry , Hippocampus/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Seizures/therapy , Serotonergic Neurons/chemistry
11.
Neurotherapeutics ; 17(2): 710-721, 2020 04.
Article in English | MEDLINE | ID: mdl-31802434

ABSTRACT

Status epilepticus (SE), a life-threatening neurologic emergency, is often poorly controlled by the current pharmacological therapeutics, which are limited to a narrow time window. Here, we investigated the proinflammatory cytokine high mobility group box-1 (HMGB1) as a candidate therapeutic target for diazepam (DZP)-refractory SE. We found that HMGB1 was upregulated and translocated rapidly during refractory SE period. Exogenous HMGB1 was sufficient to directly induce DZP-refractory SE in nonrefractory SE. Neutralization of HMGB1 with an anti-HMGB1 monoclonal antibody decreased the incidence of SE and alleviated the severity of seizure activity in DZP-refractory SE, which was mediated by a Toll-like receptor 4 (TLR4)-dependent pathway. Importantly, anti-HMGB1 mAb reversed DZP-refractory SE with a wide time window, extending the therapeutic window from 30 to 180 min. Furthermore, we found the upregulation of plasma HMGB1 level is closely correlated with the therapeutic response of anti-HMGB1 mAb in DZP-refractory SE. All these results indicated that HMGB1 is a potential therapeutic target and a useful predictive biomarker in DZP-refractory SE.


Subject(s)
Antibodies, Monoclonal/pharmacology , Anticonvulsants/pharmacology , Drug Resistant Epilepsy/metabolism , HMGB1 Protein/antagonists & inhibitors , Status Epilepticus/metabolism , Animals , Biomarkers/metabolism , Diazepam , HMGB1 Protein/blood , Male , Mice, Inbred C57BL
12.
Front Neurol ; 9: 1166, 2018.
Article in English | MEDLINE | ID: mdl-30687221

ABSTRACT

Objective: To provide a comprehensive review of the central nervous system (CNS) involvement in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), including the pathogenesis, clinical manifestations, ancillary investigations, differential diagnosis, and treatment. Particular emphasis is placed on the clinical spectrum and diagnostic testing of AAV. Recent Findings: AAV is a pauci-immune small-vessel vasculitis characterized by neutrophil-mediated vasculitis and granulomatousis. Hypertrophic pachymeninges is the most frequent CNS presentation. Cerebrovascular events, hypophysitis, posterior reversible encephalopathy syndrome (PRES) or isolated mass lesions may occur as well. Spinal cord is rarely involved. In addition, ear, nose and throat (ENT), kidney and lung involvement often accompany or precede the CNS manifestations. Positive ANCA testing is highly suggestive of the diagnosis, with each ANCA serotype representing different groups of AAV patients. Pathological evidence is the gold standard but not necessary. Once diagnosed, prompt initiation of induction therapy, including steroid and other immunosuppressants, can greatly mitigate the disease progression. Conclusions and Relevance: Early recognition of AAV as the underlying cause for various CNS disorders is important for neurologists. Ancillary investigations especially the ANCA testing can provide useful information for diagnosis. Future studies are needed to better delineate the clinical spectrum of CNS involvement in AAV and the utility of ANCA serotype to classify those patients. Evidence Review: We searched Pubmed for relevant case reports, case series, original research and reviews in English published between Sep 1st, 2001 and Sep 1st, 2018. The following search terms were used alone or in various combinations: "ANCA," "proteinase 3/PR3-ANCA," "myeloperoxidase/MPO-ANCA," "ANCA-associated vasculitis," "Wegener's granulomatosis," "microscopic polyangiitis," "Central nervous system," "brain" and "spinal cord". All articles identified were full-text papers.

SELECTION OF CITATIONS
SEARCH DETAIL
...