Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 221: 1103-1111, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36108746

ABSTRACT

Nitrile hydratase (NHase; EC 4.2.1.84) is widely used to synthesize the corresponding amides from nitriles, which is the most successful green biocatalyst. However, the limited acceptability of substrates and instability under harsh reaction conditions have hindered its widespread industrial application. Here, a gene encoding an extremophilic NHase from Streptomyces thermoautotrophicus (S.t NHase) was successfully overexpressed in Escherichia coli. The enzyme exhibited excellent thermostability, retaining >50 % of residual activity after heat treatment at 65 °C for 252 min. To further improve the catalytic performance of S.t NHase, semi-rational engineering of its substrate access tunnel was performed. A mutant ßL48D showed a specific activity of 566.18 ± 18.86 U/mg towards 3-cyanopyridine, which was 7.7 times higher than its parent enzyme (73.80 ± 5.76 U/mg). Molecular dynamics simulation showed that the introduction of aspartic acid into ßLeu48 resulted in a larger and more frequent opening of the substrate access tunnel entrance. On this basis, a "toolbox" containing various mutants on the substrate access tunnel was further established, whose catalytic activity towards various nitrile substrates was extensively improved, showing great potential for efficient synthesis of multiple high-value amides.


Subject(s)
Amides , Extremophiles , Hydro-Lyases/chemistry , Escherichia coli/genetics , Nitriles/chemistry
2.
Molecules ; 25(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086715

ABSTRACT

High thermostability and catalytic activity are key properties for nitrile hydratase (NHase, EC 4.2.1.84) as a well-industrialized catalyst. In this study, rational design was applied to tailor the thermostability of NHase from Pseudonocardia thermophila JCM3095 (PtNHase) by combining FireProt server prediction and molecular dynamics (MD) simulation. Site-directed mutagenesis of non-catalytic residues provided by the rational design was subsequentially performed. The positive multiple-point mutant, namely, M10 (αI5P/αT18Y/αQ31L/αD92H/ßA20P/ßP38L/ßF118W/ßS130Y/ßC189N/ßC218V), was obtained and further analyzed. The Melting temperature (Tm) of the M10 mutant showed an increase by 3.2 °C and a substantial increase in residual activity of the enzyme at elevated temperatures was also observed. Moreover, the M10 mutant also showed a 2.1-fold increase in catalytic activity compared with the wild-type PtNHase. Molecular docking and MD simulations demonstrated better substrate affinity and improved thermostability for the mutant.


Subject(s)
Amino Acid Sequence/genetics , Enzyme Stability/genetics , Hydro-Lyases/chemistry , Catalysis , Hydro-Lyases/genetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Pseudonocardia/chemistry , Pseudonocardia/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...