Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 332: 117380, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36731411

ABSTRACT

The Chengbi River Basin is a typical karst watershed in Southwest China. Understanding the effects of climate change (CC) and human activities (HAs) on hydrological process is important for regional water resources management and water security. However, a comprehensive assessment of the effects of CC and HAs on runoff dynamics at different time scales in the Chengbi River Basin is still lacking. To address these needs, we used Budyko Mezentsev-Choudhurdy-Yang and Slope change ratio of accumulative quantity methods to assess the contribution of the changing environment to annual and intra-annual runoff changes in the Chengbi River Basin. The results indicated that annual runoff time series was divided into the base phase Ta (1980-1996) and the change phase Tb (1997-2019). Compared to the natural status in Ta, the relative contributions of CC and HAs to the runoff increase in Tb were 154.86% and -54.86%. In addition, the shift in intra-annual runoff occurred in 2007 and was mainly caused by HAs, with a contribution rate of 76.22%. The increase in annual runoff in Tb could be attributed to the positive contribution of rainfall. Changes in rainfall and reservoir construction altered the original state of intra-annual runoff. Furthermore, the high degree of heterogeneity in the surface karst zone increased the runoff coefficient. The spatial unsaturation of the subsurface water-bearing media and rainfall patterns caused a significant lag effect in the response of surface runoff to rainfall. This study can help researchers and policy makers to better understand the response of karst runoff to changing environment and provide insights for future water resources management and flood control measures.


Subject(s)
Climate Change , Water Movements , Humans , Water Resources , Human Activities , China , Rivers , Water , Environmental Monitoring/methods
2.
J Colloid Interface Sci ; 574: 110-121, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32311534

ABSTRACT

Ag/g-C3N4 plasmonic photocatalysts with porous structure (Ag/PCN) were successfully synthesized via a thermal exfoliation strategy and photo-reduction method. Owing to the combined merits of porous structure and surface plasmon resonance effect of silver nanoparticles, the Ag/PCN catalysts exhibited excellent photocatalytic performance for the degradation of antibiotic agents. With the optimal Ag loading, the Ag/PCN-2 catalyst exhibited the optimal catalytic activity for TC degradation under visible light, which shows about 11.8 times enhancement in the photocatalytic removal efficiency as compared to pure g-C3N4, respectively. This phenomenon can be attributed to the increased specific surface area, broadened visible light absorption and improved charge separation. The radical quenching results confirmed that h+ and O2- radicals were the major active species during removal of TC. The degradation of TC is increased with the increment of Ag/PCN-2 catalysts, and the optimum catalyst was found to be 1.67 g/L. The hindering effect of selected of anions (Cl-, CO3-, H2PO4-) was found to follow the order H2PO4- > CO3- > Cl-. Ag/PCN-2 sample also possessed high stability after six cycles of reuses. Furthermore, the possible degradation pathways of TC and photocatalytic mechanism over Ag/PCN-2 were proposed in detail.

3.
RSC Adv ; 9(12): 6533-6541, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-35518501

ABSTRACT

Considering the three-dimensional ordered network of Ni foam-supported catalysts and the toxicity effects of volatile organic compounds (VOCs), the design of proper active materials for the highly efficient elimination of VOCs is of vital importance in the environmental field. In this study, a series of Co-Mn composite oxides with different Co/Mn molar ratios grown on interconnected Ni foam are prepared as monolithic catalysts for total toluene oxidation, in which Co1.5Mn1.5O4 with a molar ratio of 1 : 1 achieves the highest catalytic activity with complete toluene oxidation at 270 °C. The Co-Mn monolithic catalysts are characterized by XRD, SEM, TEM, H2-TPR and XPS. It is observed that a moderate ratio of Mn/Co plays significant effects on the textural properties and catalytic activities. From the XPS and H2-TPR characterization results, the obtained Co1.5Mn1.5O4 (Co/Mn = 1/1) favors the excellent low-temperature reducibility, high concentration of surface Mn3+ and Co3+ species, and rich surface oxygen vacancies, resulting in superior oxidation performance due to the formation of a solid solution between the Co and Mn species. It is deduced that the existence of the synergistic effect between Co and Mn species results in a redox reaction: Co3+-Mn3+ ↔ Co2+-Mn4+, and enhances the catalytic activity for total toluene oxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...