Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 14: 1366908, 2024.
Article in English | MEDLINE | ID: mdl-38725449

ABSTRACT

Background: Metagenomic next-generation sequencing (mNGS) is a novel non-invasive and comprehensive technique for etiological diagnosis of infectious diseases. However, its practical significance has been seldom reported in the context of hematological patients with high-risk febrile neutropenia, a unique patient group characterized by neutropenia and compromised immune responses. Methods: This retrospective study evaluated the results of plasma cfDNA sequencing in 164 hematological patients with high-risk febrile neutropenia. We assessed the diagnostic efficacy and clinical impact of mNGS, comparing it with conventional microbiological tests. Results: mNGS identified 68 different pathogens in 111 patients, whereas conventional methods detected only 17 pathogen types in 36 patients. mNGS exhibited a significantly higher positive detection rate than conventional methods (67.7% vs. 22.0%, P < 0.001). This improvement was consistent across bacterial (30.5% vs. 9.1%), fungal (19.5% vs. 4.3%), and viral (37.2% vs. 9.1%) infections (P < 0.001 for all comparisons). The anti-infective treatment strategies were adjusted for 51.2% (84/164) of the patients based on the mNGS results. Conclusions: mNGS of plasma cfDNA offers substantial promise for the early detection of pathogens and the timely optimization of anti-infective therapies in hematological patients with high-risk febrile neutropenia.


Subject(s)
Febrile Neutropenia , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Metagenomics/methods , Male , Retrospective Studies , High-Throughput Nucleotide Sequencing/methods , Female , Middle Aged , Febrile Neutropenia/microbiology , Febrile Neutropenia/blood , Febrile Neutropenia/diagnosis , Adult , Aged , Young Adult , Adolescent , Aged, 80 and over , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Mycoses/diagnosis , Mycoses/microbiology , Virus Diseases/diagnosis , Virus Diseases/virology
2.
Hematology ; 29(1): 2356300, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38776229

ABSTRACT

OBJECTIVES: T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma (T-ALL/LBL) are highly malignant and aggressive hematologic tumors for which there is no standard first-line treatment. Chidamide, a novel histone deacetylase inhibitor, shows great promise. We assessed the efficacy and safety of an irradiation-containing conditioning regimen for allogeneic hematopoietic stem cell transplantation (allo-HSCT) and post-transplantation chidamide maintenance in patients with T-ALL/LBL. METHODS: We retrospectively analyzed the clinical data of six patients with T-ALL/LBL who underwent allo-HSCT with a radiotherapy-containing pretreatment regimen and post-transplant chidamide maintenance therapy. The endpoints were relapse, graft-versus-host disease (GVHD), transplant-related mortality (TRM), progression-free survival (PFS), overall survival (OS), and adverse events (AEs). RESULTS: All of the patients had uneventful post-transplant hematopoietic reconstitution, and all achieved complete molecular remission within 30 days. All six patients survived, and two relapsed with a median relapse time of 828.5 (170-1335) days. The 1-year OS rate was 100%, the 2-year PFS rate was 66.7%, and the TRM rate was 0%. After transplantation, two patients developed grade I-II acute GVHD (2/6); grade III-IV acute and chronic GVHD were not observed. The most common AEs following chidamide administration were hematological AEs, which occurred to varying degrees in all patients; liver function abnormalities occurred in two patients (grade 2), and symptoms of malaise occurred in one patient (grade 1). CONCLUSION: Chidamide maintenance therapy after T-ALL/LBL transplantation is safe, but the efficacy needs to be further investigated.


Subject(s)
Aminopyridines , Benzamides , Hematopoietic Stem Cell Transplantation , Transplantation Conditioning , Humans , Retrospective Studies , Male , Female , Aminopyridines/therapeutic use , Aminopyridines/administration & dosage , Adult , Benzamides/therapeutic use , Transplantation Conditioning/methods , Hematopoietic Stem Cell Transplantation/methods , Middle Aged , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Young Adult , Adolescent , Graft vs Host Disease/etiology
3.
Front Immunol ; 14: 1254010, 2023.
Article in English | MEDLINE | ID: mdl-37841245

ABSTRACT

Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has cured many patients with malignant hematologic diseases such as mixed phenotype acute leukemia (MPAL), while those relapsing after allo-HSCT still exhibit high mortality, poor prognosis, and no standard treatment modalities. It is necessary to explore more therapeutic modalities for patients with post-transplant relapse to obtain a better prognosis. Case presentation: In this case report, a young male with MPAL received allo-HSCT after reaching complete remission (CR) by induction chemotherapy. Unfortunately, relapse of both myeloid and T lineages occurred nine months later. After receiving demethylating chemotherapy, myeloid lineage measurable residual disease (MRD) turned negative. T-lineage MRD turned negative after CD7-targeted chimeric antigen receptor (CAR)-T cell therapy. The bone marrow remained MRD-negative for 4 months. This case preliminarily demonstrated a long-lasting CR with CD7-targeted CAR-T cell therapy, allowing a better prognosis. Conclusion: Demethylating drugs combined with CD7-targeted CAR-T cell therapy is feasible in treating MPAL patients with relapse after transplantation, with good efficacy and safety, which will be a promising treatment option for MPAL.


Subject(s)
Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Male , Receptors, Chimeric Antigen/genetics , Acute Disease , Chronic Disease , Neoplasm, Residual , Recurrence , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Phenotype
4.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675303

ABSTRACT

Stroke, one of the leading causes of disability and death worldwide, is a severe neurological disease that threatens human life. Protopanaxatriol (PPT), panaxatriol-type saponin aglycone, is a rare saponin that exists in Panax ginseng and Panax Noto-ginseng. In this study, we established an oxygen-glucose deprivation (OGD)-PC12 cell model and middle cerebral artery occlusion/reperfusion (MCAO/R) model to evaluate the neuroprotective effects of PPT in vitro and in vivo. In addition, metabolomics analysis was performed on rat plasma and brain tissue samples to find relevant biomarkers and metabolic pathways. The results showed that PPT could significantly regulate the levels of LDH, MDA, SOD, TNF-α and IL-6 factors in OGD-PC12 cells in vitro. PPT can reduce the neurological deficit score and infarct volume of brain tissue in rats, restore the integrity of the blood-brain barrier, reduce pathological damage, and regulate TNF-α, IL-1ß, IL-6, MDA, and SOD factors. In addition, the results of metabolomics found that PPT can regulate 19 biomarkers involving five metabolic pathways, including amino acid metabolism, arachidonic acid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. Thus, it could be inferred that PPT might serve as a novel natural agent for MCAO/R treatment.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Saponins , Rats , Humans , Animals , Brain Ischemia/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Tumor Necrosis Factor-alpha , Interleukin-6 , Infarction, Middle Cerebral Artery/pathology , Glucose , Reperfusion Injury/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Superoxide Dismutase
5.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500439

ABSTRACT

Ulcerative colitis (UC) is a chronic, nonspecific inflammation of the bowel that mainly affects the mucosa and submucosa of the rectum and colon. Ginsenosides are the main active ingredients in ginseng and show many therapeutic effects in anti-inflammatory diseases, cancer, and nervous system regulation. Protopanaxatriol saponin (PTS) is an important part of saponins, and there is no research on its pharmacological effects on colitis. In this study, a model of ulcerative colitis in mice was induced by having mice freely drink 3.5% dextran sodium sulfate (DSS) solution, and UPLC-Q-TOF-MS-based metabolomics methods were applied to explore the therapeutic effect and protective mechanism of PTS for treating UC. The results showed that PTS could significantly prevent colon shortening and pathological damage and alleviate abnormal changes in UC mouse physiological and biochemical parameters. Moreover, PTS intervention regulated proinflammatory cytokines such as TNF-α, IL-6, and IL-1 in serum, and MPO and NO in colon. Interestingly, PTS could significantly inhibit UC mouse metabolic dysfunction by reversing abnormal changes in 29 metabolites and regulating eleven metabolic pathways. PTS has potential application in the treatment of UC and could alleviate UC in mice by affecting riboflavin metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, retinol metabolism, and steroid hormone biosynthesis and by regulating pentose and glucuronate conversion, linoleic acid metabolism, phenylalanine metabolism, ether lipid metabolism, sphingolipid metabolism, and tyrosine metabolism, which points at a direction for further research and for the development of PTS as a novel natural agent.


Subject(s)
Colitis, Ulcerative , Colitis , Saponins , Mice , Animals , Dextran Sulfate/adverse effects , Saponins/metabolism , Disease Models, Animal , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colon/metabolism , Colitis/drug therapy , Inflammation/drug therapy , Mice, Inbred C57BL
6.
Oncol Lett ; 22(1): 559, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34084226

ABSTRACT

The present study aimed to observe previously unidentified gene mutation and expression profiles associated with acute myeloid leukemia (AML) at the individual level, based on the blood samples of a father-son pair. Genomic DNA and RNA samples from blood serum were collected. Whole-genome sequencing (WGS) and whole-exome sequencing (WES), as well as mRNA sequencing of the son, were performed. For the father's sample, a total of 3,897,164 single nucleotide polymorphisms (SNPs) and 780,834 insertion and deletions (indels) were identified. Regarding amino acid translation, there were 11,316 non-synonymous, 12 stop-loss, 12,033 synonymous, 92 stop-gain SNPs, 63 frameshift insertions, 73 frameshift deletions, 242 non-frameshift insertions, 248 non-frameshift deletions, four stop-gains and two stop-loss for indel variants. Among the AML-related genes that had been previously identified, 14 genes were found in the father's exon region. For WES of the son's DNA, 96,639 SNPs were identified, including 10,504 non-synonymous SNPs. Seven mutant genes were found in sons' exon region compared with 121 AML-related genes. Based on the transcriptomic sequencing, there were 54 differentially expressed mRNAs, including 31 upregulated and 23 downregulated mRNAs. In the exon region, 10,072 SNPs were detected, and different types of alternative splicing in the son's sample were observed. Overall, whole genome, exon mutation and transcriptomic profiling of the present two patients with AML may provide a new insight into the molecular events governing the development of AML.

7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(3): 951-956, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34105499

ABSTRACT

OBJECTIVE: To retrospectively analyze the efficacy and safety of pegylated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF) in hematopoietic stem cell mobilization in 71 normal healthy donors for allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS: From March 2018 to July 2019, 71 patients received allo-HSCT in The General Hospital of Western Theater Command were enrolled in the study, a single dose of PEG-rhG-CSF was injected subcutaneously at 12 mg to all the stem cell donors. After injection for 4 days, CD34+ cell number were detected, stem cells were collected on day 4 or 5 according to the CD34+ cell number. The successful collection criteria were CD34+ cells≥2×106/kg, and the excellent collection criteria were CD34+ cells≥4×106/kg. The side effects after mobilization were observed and the collection time, the success rate, excellent rate, and times of the collection were evaluated in the donors, as well as the infused cell number, the engraftment rate, the time of engraftment, and the incidence of acute graft-versus-host disease (aGVHD) of the recipients. RESULTS: Seventy-one healthy stem cell donors included 39 males and 32 females with a median age of 38 (16-58) years old. The median number of CD34+ cells on day 4 was 46 (7.4-133)/µl, of which 39 cases with CD34+ cells ≥ 40/µl were collected on day 4, 28 cases with CD34+ cells 20-40/µl were collected on day 5, and 4 cases with CD34+ cells <20/µl were collected on day 5 after a salvage treatment with rhG-CSF. Sixty-five cases were collected once, while 6 cases twice. The median number of collected CD34+ cells was 6.1(3.1-18.1)×106/kg. The success collection rate was 100% (71/71), and the excellent collection rate was 81.6% (58/71). All the cases had varying degrees of muscle and bone soreness, 17 cases (23.9%) had headache, 11 cases (15.5%) had fatigue, and 3 cases (4.2%) had a mild fever. Among 71 recipients, the median number of infused mononuclear cells (MNC) was 8.3(5-23.3)×108/kg, the median number of infused CD34+ cells and CD3+ cells was 5.3(3.1-10.7)×106/kg and 1.9 (0.5-7.6)×108/kg, respectively. Among them, 68 cases (95.8%) had a stable engraftment, the median time of neutrophil engraftment was 11(8-19) days, and the median time of platelet engraftment was 12(8-23) days. Among the 68 cases who were engrafted, 15 cases (22%) had grade Ⅱ-Ⅳ aGVHD, including grade Ⅲ-Ⅳ aGVHD in 3 patients (4.4%), 2 cases (2.9%) died of severe aGVHD. CONCLUSION: For allo-HSCT donor mobilization, PEG-rh-G-CSF is effective, safe, and convenient, providing more options for HSC mobilization.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Adult , Antigens, CD34 , Female , Granulocyte Colony-Stimulating Factor , Hematopoietic Stem Cell Mobilization , Humans , Male , Middle Aged , Recombinant Proteins , Retrospective Studies
8.
Oncol Lett ; 18(6): 6536-6544, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31788114

ABSTRACT

Myeloma bone disease (MBD) is one of the clinical features of multiple myeloma, which contributes to the attenuation of osteoblast function. Bone marrow mesenchymal stem cells exhibit a high potential for differentiation into osteoblasts. A number of studies have reported that microRNAs (miRs) serve a vital role in mesenchymal stem cell (MSC) osteogenesis; however, the role of miR-221-5p in the osteogenic differentiation of MBD-MSCs remains unclear. The present study revealed that the osteogenic differentiation capacity of MBD-MSCs was reduced compared with that of normal (N)-MSCs. Further experiments demonstrated that miR-221-5p expression was downregulated in N-MSCs following osteoblast induction while no obvious alterations in expression levels were observed in MBD-MSCs. The inhibition of miR-221-5p promoted the osteogenic differentiation of MBD-MSCs. Bioinformatics, luciferase reporter assays, reverse transcription-quantitative PCR and western blotting assays indicated that smad family member 3 (smad3) was a direct target of miR-221-5p in MBD-MSCs. A negative association was identified between the expression levels of smad3 and miR-221-5p. Investigations of the molecular mechanism indicated that suppressed miR-221-5p could regulate the osteogenic differentiation of MBD-MSCs by upregulating smad3 expression. It was also identified that the PI3K/AKT/mTOR signaling pathway was activated following miR-221-5p inhibition, and this increased the osteogenic differentiation capacity of MBD-MSCs. The present study may improve the understanding regarding the role of miR-221-5p in the regulation of osteogenic differentiation, and may contribute to the development of a novel therapy for MBD.

9.
Mol Clin Oncol ; 3(6): 1233-1238, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26807226

ABSTRACT

Epstein-Barr virus (EBV)-related non-Hodgkin's lymphoma (NHL) represents a major problem in hematological clinical studies due to its drug tolerance and refractoriness. EBV infection is a key factor driving the process of tumor growth. Immune therapy is an important biotherapeutic method of treating cancer, which is attracting increasing attention. We hypothesized that combining conventional chemotherapy with immune therapy in the treatment of EBV-related NHL may achieve better outcomes. First, we successfully cloned large numbers of EBV-specific T cells by immune stimulation ex vivo. Subsequently, the combined therapy was applied in a murine model of human EBV-related NHL. As expected, combined therapy inhibited tumor growth more effectively compared with monotherapy. In addition, we continuously tested the tumor-associated immune microenvironment and observed that the numbers of tumor-infiltrating cytotoxic T lymphocytes (CTLs) and macrophages were elevated following combined therapy. These effects suggest that EBV-specific CTLs may indirectly promote an innate immune reaction in lymphoma by activating tumor-infiltrating macrophage proliferation. Our findings may provide a guide for the prospective treatment of EBV-related NHL.

10.
Immunopharmacol Immunotoxicol ; 32(4): 576-84, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20131955

ABSTRACT

CONTEXT: Polysaccharopeptide (PSP) was extracted from Coriolus versicolor, and has been proved to be a valuable adjuvant for the combination with chemotherapy or radiotherapy in the treatment of various cancers. OBJECTIVE: To understand the mechanism of PSP on immunomodulation, we examined gene expression and cytokine secretion associated with immunosignal-transduction signaling in human peripheral blood mononuclear cells (PBMCs). METHODS: cDNA microarray and cytokine antibody array were used to identify differential gene expression profiles and cytokines secretion of PBMCs in the presence or absence of PSP for 24 h. The expression of the key genes and proteins related to Toll-like receptor (TLR) signaling and its downstream pathway was determined by RT-PCR or Western blot. RESULTS: Compared with the control group, PSP up-regulated 22 genes expression (such as IFN-γ, CXCL10, TLR4, TLR5) in 117 genes associated with TLR signaling. Twenty-three of genes (e.g., TLR9, TLR10, SARM1, TOLLIP) related with TLR signaling pathway were down-regulated in PBMCs under PSP treatments. Five of cytokines (GCSF, GM-CSF, IL-1α, IL-6, IFN-γ) were up-regulated more than 1.3 times by PSP. The mRNA levels of TRAM, TRIF, and TRAF6, which are the key molecules of TLR signaling pathway, were markedly increased (P < 0.05). Moreover, the protein level of TRAF6 was also markedly increased (P < 0.01). CONCLUSIONS: PSP-regulated gene expression and cytokine secretion related to TLR signaling pathway in human PBMCs. Especially, TRAM-TRIF-TRAF6 subsignaling pathway of TLR may be one of the key associated signaling pathways in the immunomodulation of PSP.


Subject(s)
Immunologic Factors/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Proteoglycans/pharmacology , Signal Transduction/immunology , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Vesicular Transport/genetics , Cytokines/metabolism , Down-Regulation/genetics , Gene Expression/drug effects , Gene Expression/genetics , Gene Expression Profiling , Humans , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Oligonucleotide Array Sequence Analysis , TNF Receptor-Associated Factor 6/genetics , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...