Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 64(10): 4089-4101, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38717640

ABSTRACT

Accurate force field parameters, potential energy functions, and receptor-ligand models are essential for modeling the solvation and binding of drug-like molecules to a receptor. A large and ever-growing chemical space of medicinally relevant scaffolds has also required these factors, especially force field parameters, to be highly transferable. Generalized force fields such as the CHARMM General Force Field (CGenFF) and the generalized AMBER force field (GAFF) have accomplished this feat along with other contemporaneous ones like OPLS. Here, we analyze the limits in the parametrization of drug-like small molecules by CGenFF and GAFF in terms of the various functional groups represented within them. Specifically, we link the presence of specific functional groups to the error in the absolute hydration free energy of over 600 small molecules, predicted by alchemical free energy methods implemented in the CHARMM program. Our investigation reveals that molecules with (i) a nitro group in CGenFF and GAFF are, respectively, over- or undersolubilized in aqueous medium, (ii) amine groups are undersolubilized more so in CGenFF than in GAFF, and (iii) carboxyl groups are more oversolubilized in GAFF than in CGenFF. We present our analyses of the potential factors underlying these trends. We also showcase the use of a machine-learning-based approach combined with the SHapley Additive exPlanations framework to attribute these trends to specific functional groups, which can be easily adopted to explore the limits of other general force fields.


Subject(s)
Thermodynamics , Water , Water/chemistry , Small Molecule Libraries/chemistry , Molecular Dynamics Simulation , Ligands
2.
J Chem Theory Comput ; 19(12): 3752-3762, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37267404

ABSTRACT

CHARMM is rich in methodology and functionality as one of the first programs addressing problems of molecular dynamics and modeling of biological macromolecules and their partners, e.g., small molecule ligands. When combined with the highly developed CHARMM parameters for proteins, nucleic acids, small molecules, lipids, sugars, and other biologically relevant building blocks, and the versatile CHARMM scripting language, CHARMM has been a trendsetting platform for modeling studies of biological macromolecules. To further enhance the utility of accessing and using CHARMM functionality in increasingly complex workflows associated with modeling biological systems, we introduce pyCHARMM, Python bindings, functions, and modules to complement and extend the extensive set of modeling tools and methods already available in CHARMM. These include access to CHARMM function-generated variables associated with the system (psf), coordinates, velocities and forces, atom selection variables, and force field related parameters. The ability to augment CHARMM forces and energies with energy terms or methods derived from machine learning or other sources, written in Python, CUDA, or OpenCL and expressed as Python callable routines is introduced together with analogous functions callable during dynamics calculations. Integration of Python-based graphical engines for visualization of simulation models and results is also accessible. Loosely coupled parallelism is available for workflows such as free energy calculations, using MBAR/TI approaches or high-throughput multisite λ-dynamics (MSλD) free energy methods, string path optimization calculations, replica exchange, and molecular docking with a new Python-based CDOCKER module. CHARMM accelerated platform kernels through the CHARMM/OpenMM API, CHARMM/DOMDEC, and CHARMM/BLaDE API are also readily integrated into this Python framework. We anticipate that pyCHARMM will be a robust platform for the development of comprehensive and complex workflows utilizing Python and its extensive functionality as well as an optimal platform for users to learn molecular modeling methods and practices within a Python-friendly environment such as Jupyter Notebooks.


Subject(s)
Molecular Dynamics Simulation , Nucleic Acids , Molecular Docking Simulation , Proteins/metabolism
3.
J Chem Inf Model ; 62(19): 4569-4578, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36154169

ABSTRACT

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of chemicals widely used in industrial applications due to their exceptional properties and stability. However, they do not readily degrade in the environment and are linked to contamination and adverse health effects in humans and wildlife. To find alternatives for the most commonly used PFAS molecules that maintain their desirable chemical properties but are not adverse to biological lifeforms, a novel approach based upon machine learning is utilized. The machine learning model is trained on an existing set of PFAS molecules to generate over 260,000 novel PFAS molecules, which we dub PFAS-AI-Gen. Using molecular descriptors with known relationships to toxicity and industrial suitability followed by molecular docking and molecular dynamics simulations, this set of molecules is screened. In this manner, increasingly complex calculations are performed only for candidate molecules that are most likely to yield the desired properties of low binding affinity toward two selected protein receptors, the human pregnane x receptor (hPXR) and peroxisome proliferator-activated receptor γ (PPAR-γ), and high industrial suitability, defined by critical micelle concentration (CMC). The selection criteria of low binding affinity and high industrial suitability are relative to the popular PFAS alternative GenX. hPXR and PPAR-γ are selected as they are PFAS targets and facilitate a variety of functions, such as drug metabolism and glucose regulation, respectively. Through this approach, 22 promising new PFAS substitutes that may warrant experimental investigation are identified. This integrated approach of molecular screening and toxicity estimation may be applicable to other chemical classes.


Subject(s)
Fluorocarbons , Fluorocarbons/chemistry , Fluorocarbons/toxicity , Glucose , Humans , Machine Learning , Micelles , Molecular Docking Simulation , PPAR gamma , Pregnane X Receptor
4.
Environ Sci Technol ; 54(24): 15986-15995, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33228354

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are a class of environmentally persistent industrial compounds that disrupt various metabolic pathways. Among the protein receptors to which PFASs bind, the human pregnane X receptor (hPXR) is found to be a host for a variety of long- and short-chain PFASs that lead to its overactivation. Overactivation of hPXR is linked to potential endocrine disruption, oxidative stress, hepatic steatosis, and adverse drug interactions. In this study, molecular dynamics (MD) is used to study the binding between hPXR and a number of PFAS compounds, including alternatives whose activity on hPXR has not been experimentally tested. This is the first-time MD is used to study the interactions between PFASs and hPXR, showing how relative binding free energies of PFASs relate to hPXR agonism. Binding free energy calculations, hydrogen bond analysis, per-residue decomposition calculations, and alanine scanning studies are done to provide further insight. Activities on hPXR for several short-chain and alternative PFAS compounds to long-chain PFASs that have yet to be reported will also be considered. These short-chain and alternative species include perfluorobutane sulfonic acid (PFBS), Gen-X (trade name for 2,3,3,3-tetrafluoro-2-heptafluoropropoxy propanoic acid), ADONA (trade name for 4,8-dioxa-3H-perfluorononanoic acid), and 6:2 fluorotelomer carboxylic acid (6:2 FTCA). The study shows key aspects of PFAS recognition on the hPXR, the link between PFAS binding to hPXR and the hPXR activity change observed upon the PFAS exposure, and the potential effects of alternative PFASs on hPXR activity.


Subject(s)
Fluorocarbons , Carboxylic Acids , Humans , Pregnane X Receptor , Sulfonic Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...