Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31186655

ABSTRACT

Callicarpa nudiflora has been widely used in Li nationality medicine and treated burns and scalds in China. Our objective was to preliminarily elucidate healing effect and action mechanism of Callicarpa nudiflora water extract (CNE) on the scald wounds using an experimental rat mode. The second-degree scald wounds were induced by hot water on dorsal surface of Sprague-Dawley (SD) rats, and then they were randomly divided into 5 groups as follows: control (CON), Vaseline, Silver sulfadiazine (SSD), and Vaseline supplemented with 10% and 20% CNE groups. These ointments were employed locally once daily for 21 days. The macroscopic analysis showed CNE significantly accelerated the wound healing process and lowered the wound areas on days 15, 18, and 21 especially in 20% CNE group compared to CON group. Histopathological evaluation showed the mildly hypertrophic epidermis and the intact dermis in the 20% CNE-treated group were obviously distinguished from CON group on day 21. The CNE-treated groups had no obvious effect for TNF-α and IL-10 expressions on the second day and 14th day, while TGF-ß1 expression level was decreased on the 21th day and VEGF level was increased on the 7th day in the 20% CNE group. Furthermore, the expression level of Samd3 was strongly inhibited in 20% CNE group. These findings suggested that the CNE can enhance the wound healing and skin repair in deep second-degree scald rats and thus support its traditional use.

2.
Chem Cent J ; 9: 14, 2015.
Article in English | MEDLINE | ID: mdl-25873994

ABSTRACT

BACKGROUND: Galangin (3,5,7-trihydroxyflavone) is present in high concentrations in herbal medicine such as Alpinia officinarum Hance. Galangin shows multifaceted in vitro and in vivo biological activities. The number and position of hydroxyl groups in this molecule play an important role in these biological activities. However, these hydroxyl groups undergo glucuronidation and sulfation in in vitro assay system. However, the systemic exposure to galangin after dosing in animals and/or humans remains largely unknown. Thus it is not clear whether the galangin exists in the body at concentrations high enough for the biological effects. Furthermore, the metabolite identification and the corresponding plasma pharmacokinetics need to be characterized. RESULTS: Two LC-MS/MS methods were developed and validated and successfully applied to analyze the parent drug molecules and aglycones liberated from plasma samples via ß-glucuronidase hydrolysis. Our major findings were as follows: (1) The routes of administration showed significant influences on the systemic exposure of galangin and its metabolites. (2) Galangin was preferentially glucuronidated after p.o. dosing but sulfated after i.v. medication. (3) Kaempferol conjugates were detected demonstrating that oxidation reaction occurred; however, both glucuronidation and sulfation were more efficient. (4) Oral bioavailability of free parent galangin was very low. CONCLUSIONS: Systemic exposure to galangin and its metabolites was different in rat plasma between oral and intravenous administration. Further research is needed to characterize the structures of galangin conjugates and to evaluate the biological activities of these metabolites. Graphical abstractGalangin was preferentially glucuronidated after p.o. dosing but sulfated after i.v. medication.

3.
J Pharm Biomed Anal ; 97: 166-77, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24879483

ABSTRACT

Alpinia oxyphylla (Yizhi) capsularfruits are commonly used in traditional medicine. Pharmacological studies have demonstrated that A. oxyphylla capsularfruits have some beneficial roles. Besides volatile oil, sesquiterpenes, diarylheptanoids and flavonoids are main bioactive constituents occurring in the Yizhi capsularfruits. The representative constituents include tectochrysin, izalpinin, chrysin, apigenin-4',7-dimethylether, kaempferide, yakuchinone A, yakuchinone B, oxyphyllacinol and nootkatone. Their content levels in the fruit and its pharmaceutical preparations have been reported by our group. The nine phytochemicals are also the major components present in the Yizhi alcoholic extracts, which have anti-diarrheal activities. However, the fates of these constituents in the body after oral or intravenous administration remain largely unknown. In the present study, we focus on these phytochemicals albeit other concomitant compounds. The chemicals and their metabolites in rat plasma were identified using liquid chromatography/tandem mass spectrometry with selected reaction monitoring mode after orally administered Yizhi extract to rats. Rat plasma samples were treated by methanol precipitation, acidic or enzymatic hydrolysis. This target analysis study revealed that: (1) low or trace plasma levels of parent chemicals were measured after p.o. administration of Yizhi extract, Suoquan capsules and pills to rats; (2) flavonoids and diarylheptanoids formed mainly monoglucuronide metabolites; however, diglucuronide metabolites for chrysin, izalpinin and kaempferide were also detected; (3) metabolic reduction of Yizhi diarylheptanoids occurred in rats. Yakuchinone B was reduced to yakuchinone A and then to oxyphyllacinol in a stepwise manner and subsequently glucuronidated by UDP-glucuronosyl transferase. Further research is needed to characterize the UDP-glucuronosyl transferase and reductase involved in the biotransformation of Yizhi chemicals.


Subject(s)
Phytochemicals/blood , Phytochemicals/metabolism , Plant Extracts/blood , Plant Extracts/chemistry , Administration, Oral , Alpinia , Animals , Biotransformation , Chromatography, Liquid/methods , Male , Phytochemicals/chemistry , Plant Extracts/administration & dosage , Plant Extracts/metabolism , Rats , Tandem Mass Spectrometry/methods
4.
J Med Food ; 16(7): 663-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23875906

ABSTRACT

Crude polysaccharides (PSs) were isolated from the fruit pulp of jackfruit, and their chemical composition determined and evaluated for an immune regulatory activity in mice. The PSs were isolated from water extracts of jackfruit pulp (JFP) using the ethanol precipitation method. The resulting precipitates were further purified by dialysis and protein depletion by the Sevage method. The phenol-sulfuric method was used to determine the content of the PSs. The composition of PSs was determined by the Sephadex-G200 column chromatography and high-performance liquid chromatography methods. The thymus index and macrophage phagocytic function methods in mice were used to evaluate the immune regulatory activity of JFP-PSs. The JFP-PSs content in jackfruit was about 21% (w/w) and the yield of crude PSs was 3.91%. The single molecular mass weight PS was the main constituent of JFP-PSs. The major monosaccharide residues were rhamnose, glucose, galactose, and arabinose. The JFP-PSs enhanced the thymus weight index and the phagocytic rate after 30 days of subchronic p.o. administration to mice at 4.5 mg/kg. The JFP contains single molecular PS and JFP-PS has immune-stimulating activities in mice. These data suggest that at least some of the traditional uses of JFP can be ascribed to its immunomodulatory effects.


Subject(s)
Artocarpus/chemistry , Immune System/drug effects , Immunologic Factors/administration & dosage , Plant Extracts/administration & dosage , Polysaccharides/administration & dosage , Animals , Fruit/chemistry , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Molecular Weight , Organ Size/drug effects , Phagocytosis/drug effects , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Thymus Gland/drug effects , Thymus Gland/growth & development , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...