Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Genet ; 54(6): 808-812, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37792466

ABSTRACT

Wagyu is recognized for producing marbled beef with high nutritional value and flavor. Reportedly, Wagyu has been widely used to improve the meat quality of local breeds around the world. However, studies on the genetic mechanism of meat quality in Wagyu at the whole-genome level are rarely reported. Here, whole-genome sequencing data of 11 Wagyu and 115 other individuals were used to explore the genomic variations and genes under selection pressure in Wagyu. A total of 31 349 non-synonymous variants and 53 102 synonymous variants were identified in Wagyu. The population structure analysis showed that Wagyu had the closest genetic relationship with Mishima-Ushi cattle and was apparently separated from other cattle breeds. Then, composite likelihood ratio (CLR), integrated haplotype score, fixation index and cross-population composite likelihood ratio (XP-CLR) tests were performed to identify the candidate genes under positive selection in Wagyu. In total, 770 regions containing 312 genes were identified by at least three methods. Among them, 97 regions containing 27 genes were detected by all four methods. We specifically illustrate a list of interesting genes, including LRP2BP, GAA, CACNG6, CXADR, GPCPD1, KLF2, KLF13, SOX5, MYBPC1, SLC25A10, ATP8A1 and MYH15, which are associated with lipid metabolism, fat deposition, muscle development, bone development, feed intake and growth traits in Wagyu. This is the first study to explore the genomic variations and selection signatures of Wagyu at the whole-genome level. These results will provide significant help to beef cattle improvement and breeding.


Subject(s)
Breeding , Genome , Humans , Animals , Cattle/genetics , Meat , Phenotype , Genomics/methods , Selection, Genetic , Polymorphism, Single Nucleotide , Phospholipases , Adenosine Triphosphatases , Phospholipid Transfer Proteins
2.
Animals (Basel) ; 13(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37238146

ABSTRACT

Chinese Red Steppe Cattle (CRS), a composite cattle breed, is well known for its milk production, high slaughter rate, carcass traits, and meat quality. Nowadays, it is widely bred in Jilin and Hebei Province and the Inner Mongolia Autonomous region. However, the population structure and the genetic basis of prominent characteristics of CRS are still unknown. In this study, we systematically describe their population structure, genetic diversity, and selection signature based on genotyping data from 61 CRS individuals with GGP Bovine 100 K chip. The results showed that CRS cattle had low inbreeding levels and had formed a unique genetic structure feature. Using two complementary methods (including comprehensive haplotype score and complex likelihood ratio), we identified 1291 and 1285 potentially selected genes, respectively. There were 141 genes annotated in common 106 overlapping genomic regions covered 5.62 Mb, including PLAG1, PRKG2, DGAT1, PARP10, TONSL, ADCK5, and BMP3, most of which were enriched in pathways related to muscle growth and differentiation, milk production, and lipid metabolism. This study will contribute to understanding the genetic mechanism behind artificial selection and give an extensive reference for subsequent breeding.

5.
Front Genet ; 13: 868717, 2022.
Article in English | MEDLINE | ID: mdl-35480317

ABSTRACT

It is well known that Dorper (DP) is a full-bodied, fast-growing and high dressing percentage breed, while the production performance of Small-tailed Han sheep (STH) is not so excellent, in contrast to DP. Therefore, in this study, a comparative transcriptomic analysis of liver and muscle tissues from DP and STH breeds was carried out to find differentially expressed genes (DEGs) that affect their growth and meat quality traits. The results showed that the total number of DEGs was 2,188 in the two tissues. There were 950, 160 up-regulated and 1,007, 71 down-regulated genes in the liver and muscle, respectively. Several DEGs such as TGFB1, TGFB3, FABP3, LPL may be associated with growth and development in DP. Also, several GO terms were found to be associated with muscle growth and development, such as developmental growth (GO:0048589), and myofibril (GO:0030016). Further validation of eight genes (6 up-regulated, and 2 down-regulated) was performed using quantitative RT-PCR. These findings will provide valuable information for studying growth and development as well as meat quality traits in sheep.

6.
Anim Genet ; 53(2): 224-229, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35099062

ABSTRACT

The South African Mutton Merino (SAMM), a dual-purpose (meat and wool) sheep breed, is characterized by its excellent performance on growth, carcass traits and meat quality compared to other fine-wool Merino breeds. Nowadays, the SAMM breed has been widely used to cross with commercial and indigenous fine-wool or coarse-wool breeds to improve the growth and meat performance in many countries. To date, however, little is known about the genetic basis for its prominent characteristics. In this study, whole-genome sequences of 10 SAMM were sequenced and the selection signatures were analyzed together with those of 39 Australian Merino and Chinese Merino (wool-type Merino) by FST , iHS, and XP-EHH methods. In total, 313 genes in 277 regions were identified by at least 2 methods with the signal of selection and 21 of them were identified by all three methods. We highlighted a list of interesting genes, including GHR, LCORL, SMO, NCAPG, DCC, IBSP, PPARGC1A, PACRGL, PRDM5, XYLB, AHCYL2, TEFM, AFG1L, and FAM184B, which have been shown to be involved in growth, carcass traits, and meat quality by previous studies. Herein, GHR, encoding a transmembrane receptor for growth hormone, is the most notable one. We report the first study on selection signatures analysis of SAMM at whole-genome sequence level. These results provide new insights into the genetic mechanisms underlying the growth and carcass traits in SAMM.


Subject(s)
Sheep, Domestic , Wool , Animals , Australia , Meat/analysis , Phenotype , Polymorphism, Single Nucleotide , Sheep , Sheep, Domestic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...