Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 743, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35031639

ABSTRACT

Examining continuous seismic data recorded by a dense broadband seismic network throughout Taipei shows for the first time, the nature of seismic noise in this highly populated metropolitan area. Using 140 broadband stations in a 50 km × 69 km area, three different recurring, strong noise signals characterized by dominant frequencies of 2-20 Hz, 0.25-1 Hz, and < 0.2 Hz are explored. At frequencies of 2-20 Hz, the seismic noise exhibits daily and weekly variations, and a quiescence during the Chinese New Year holidays. The largest amplitude occurred at a station located only 400 m from a traffic-roundabout, one of the busiest intersections in Taipei, suggesting a possible correlation between large amplitude and traffic flow. The median daily amplitude for the < 0.2 Hz and 0.2-1.0 Hz frequency bands is mostly synchronized with high similarity between stations, indicating that the sources are persistent oceanic or atmospheric perturbations across a large area. The daily amplitude for the > 2 Hz band, however, is low, indicating a local source that changes on shorter length scales. Human activities responsible for the 2-40 Hz energy in the city, we discovered, are able to produce amplitudes approximately 2 to 1500 times larger than natural sources. Using the building array deployed in TAIPEI 101, the tallest building in Taiwan, we found the small but repetitive ground vibration induced by traffic has considerable effect on the vibration behavior of the high-rise building. This finding urges further investigation not only on the dynamic and continuous interaction between vehicles, roads, and buildings, but also the role of soft sediment on such interaction.

2.
Sci Rep ; 11(1): 1561, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33452469

ABSTRACT

It is conventionally believed that magma generation beneath the volcanic arc is triggered by the infiltration of fluids or melts derived from the subducted slab. However, recently geochemical analyses argue the arc magma may be formed by mélange diapirs that are physically mixed by sediment, altered oceanic crust, fluids, and mantle above the subducted slab. Further numerical modeling predicts that the mantle wedge diapirs have significant seismic velocity anomalies, even though these have not been observed yet. Here we show that unambiguously later P-waves scattered from some obstacles in the mantle wedge are well recorded at a dense seismic array (Formosa Array) in northern Taiwan. It is the first detection of seismic scattering obstacles in the mantle wedge. Although the exact shape and size of the scattered obstacles are not well constrained by the arrival-times of the later P-waves, the first order approximation of several spheres with radius of ~ 1 km provides a plausible interpretation. Since these obstacles were located just beneath the magma reservoirs around depths between 60 and 95 km, we conclude they may be mantle wedge diapirs that are likely associated with magma generation beneath active volcanoes.

3.
Sci Rep ; 8(1): 16401, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30401817

ABSTRACT

Although surface geology, eruption information and clustering seismicity all suggest Turtle Island (Kueishantao) of northern Taiwan is an active volcano, there was no direct evidence to conclude that magma reservoirs exist beneath it. Even less evidence is available to determine their spatial configuration. If the magma reservoirs are filled by liquids and melt, S-waves are totally reflected and leave behind a shadow, like when passing through the Earth's outer core. We detect both these S-wave shadows and strong reflections from the surface using earthquakes at different depths and azimuths. These observations identify a km-scale molten-filled volume located beneath Turtle Island. The magmatic nature of the reservoir is supported by the onset of non-double-couple earthquakes with strong CLVD (Compensated Linear Vector Dipole) and ISO (Isotropic) components, which show a tensor crack compatible with some volume changes within the reservoir. Combining these results with two independent 3-D velocity models and aeromagnetic anomalies recorded in Taiwan, a partially-molten ~19% low-velocity volume is estimated in the mid-crust (13-23 km), with spatial uncertainties of ~3 km. The elongated direction approximately follows the strike of the Okinawa trough, indicating that the source of the magma reservoir might be a back-arc opening.

SELECTION OF CITATIONS
SEARCH DETAIL
...