Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 10(9): e2205551, 2023 03.
Article in English | MEDLINE | ID: mdl-36698262

ABSTRACT

Autonomic imbalance is an important characteristic of patients after myocardial infarction (MI) and adversely contributes to post-MI cardiac remodeling and ventricular arrhythmias (VAs). A previous study proved that optogenetic modulation could precisely inhibit cardiac sympathetic hyperactivity and prevent acute ischemia-induced VAs. Here, a wireless self-powered optogenetic modulation system is introduced, which achieves long-term precise cardiac neuromodulation in ambulatory canines. The wireless self-powered optical system based on a triboelectric nanogenerator is powered by energy harvested from body motion and realized the effective optical illumination that is required for optogenetic neuromodulation (ON). It is further demonstrated that long-term ON significantly mitigates MI-induced sympathetic remodeling and hyperactivity, and improves a variety of clinically relevant outcomes such as improves ventricular dysfunction, reduces infarct size, increases electrophysiological stability, and reduces susceptibility to VAs. These novel insights suggest that wireless ON holds translational potential for the clinical treatment of arrhythmia and other cardiovascular diseases related to sympathetic hyperactivity. Moreover, this innovative self-powered optical system may provide an opportunity to develop implantable/wearable and self-controllable devices for long-term optogenetic therapy.


Subject(s)
Myocardial Infarction , Optogenetics , Animals , Dogs , Ventricular Remodeling/physiology , Heart , Myocardial Infarction/drug therapy , Arrhythmias, Cardiac/therapy , Arrhythmias, Cardiac/pathology
2.
Oxid Med Cell Longev ; 2022: 4740931, 2022.
Article in English | MEDLINE | ID: mdl-35422894

ABSTRACT

Choline is a precursor of the major neurotransmitter acetylcholine and has been demonstrated beneficial in diverse models of cardiovascular disease. Here, we sought to verify that choline protects the heart from DOX-induced cardiotoxicity and the underlying mechanisms. The results showed that DOX treatment decreased left ventricular ejection fraction and fractional shortening and increased serum cardiac markers and myocardial fibrosis, which were alleviated by cotreatment with choline. DOX-induced cardiotoxicity was accompanied by increases in oxidative stress, inflammation, and apoptosis, which were rectified by choline cotreatment. Levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase-1 (HO-1), which are antioxidant markers, were lowered by DOX and upregulated by choline. Moreover, DOX significantly decreased serum acetylcholine levels and the high-frequency component of heart rate variability and increased serum norepinephrine levels and the low-frequency component; these effects were rescued by choline administration. Interestingly, the protective effects of choline could be partially reversed by administration of the muscarinic receptor antagonist atropine. This suggests that choline might be a promising adjunct therapeutic agent to alleviate DOX-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , NF-E2-Related Factor 2 , Humans , Acetylcholine/pharmacology , Apoptosis , Cardiotoxicity/metabolism , Choline/metabolism , Doxorubicin/adverse effects , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Stroke Volume , Ventricular Function, Left
3.
Cardiovasc Res ; 118(7): 1821-1834, 2022 06 22.
Article in English | MEDLINE | ID: mdl-34145895

ABSTRACT

AIMS: The clinical use of antitumour agent doxorubicin (DOX) is hampered by its dose-dependent cardiotoxicity. Development of highly efficient and safe adjuvant intervention for preventing DOX-induced adverse cardiac events is urgently needed. We aimed to investigate whether transcutaneous vagal nerve stimulation (tVNS) plays a cardio-protective role in DOX-induced cardiotoxicity. METHODS AND RESULTS: Healthy male adult Sprague Dawley rats were used in the experiment and were randomly divided into four groups including control, DOX, tVNS, and DOX+tVNS groups. A cumulative dose of 15 mg/kg DOX was intraperitoneally injected into rats to generate cardiotoxicity. Non-invasive tVNS was conducted for 6 weeks (30 min/day). After 6-week intervention, the indices from the echocardiography revealed that tVNS significantly improved left ventricular function compared to the DOX group. The increased malondialdehyde and Interleukin-1ß, and decreased superoxide dismutase were observed in the DOX group, while tVNS significantly prevented these changes. From cardiac histopathological analysis, the DOX+tVNS group showed a mild myocardial damage, and decreases in cardiac fibrosis and myocardial apoptosis compared to the DOX group. Heart rate variability analysis showed that tVNS significantly inhibited DOX-induced sympathetic hyperactivity compared to the DOX group. Additionally, the results of RNA-sequencing analysis showed that there were 245 differentially expressed genes in the DOX group compared to the control group, among which 39 genes were down-regulated by tVNS and most of these genes were involved in immune system. Moreover, tVNS significantly down-regulated the relative mRNA expressions of chemokine-related genes and macrophages recruitment compared to the DOX group. CONCLUSION: These results suggest that tVNS prevented DOX-induced cardiotoxicity by rebalancing autonomic tone, ameliorating cardiac dysfunction and remodelling. Notably, crosstalk between autonomic neuromodulation and innate immune cells macrophages mediated by chemokines might be involved in the underlying mechanisms.


Subject(s)
Cardiotoxicity , Vagus Nerve Stimulation , Animals , Apoptosis , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Cardiotoxicity/prevention & control , Doxorubicin/toxicity , Male , Myocardium/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley
4.
Front Cardiovasc Med ; 8: 737135, 2021.
Article in English | MEDLINE | ID: mdl-34733893

ABSTRACT

Background: The ventromedial hypothalamus (VMH) is an important nuclei in responding to emotional stress, and emotional stress is a risk factor for cardiovascular diseases. However, the role of the VMH in cardiovascular diseases remains unknown. This study aimed to investigate the effects and underlying mechanisms of VMH activation on hypertension related cardiac remodeling in two-kidney-one-clip (2K1C) hypertension (HTN) rats. Methods: Eighteen male Sprague-Dawley rats were injected with AAV-hSyn-hM3D(Gq) into the VMH at 0 weeks and then randomly divided into three groups: (1) sham group (sham 2K1C + saline i.p. injection); (2) HTN group (2K1C + saline i.p. injection); (3) HTN+VMH activation group (2K1C + clozapine-N-oxide i.p. injection). One week later, rats were subjected to a sham or 2K1C operation, and 2 weeks later rats were injected with clozapine-N-oxide or saline for 2 weeks. Results: In the HTN+VMH activation group, FosB expression was significantly increased in VMH sections compared with those of the other two groups. Compared to the HTN group, the HTN+VMH activation group showed significant: (1) increases in systolic blood pressure (SBP); (2) exacerbation of cardiac remodeling; and (3) increases in serum norepinephrine levels and sympathetic indices of heart rate variability. Additionally, myocardial RNA-sequencing analysis showed that VMH activation might regulate the HIF-1 and PPAR signal pathway and fatty acid metabolism. qPCR results confirmed that the relative mRNA expression of HIF-1α was increased and the PPARα and CPT-1 mRNA expression were decreased in the HTN+VMH activation group compared to the HTN group. Conclusions: VMH activation could increase SBP and aggravate cardiac remodeling possibly by sympathetic nerve activation and the HIF-1α/PPARα/CPT-1 signaling pathway might be the underlying mechanism.

5.
Front Physiol ; 12: 630038, 2021.
Article in English | MEDLINE | ID: mdl-34093217

ABSTRACT

BACKGROUND: Previous studies suggest that coronavirus disease 2019 (COVID-19) is a systemic infection involving multiple systems, and may cause autonomic dysfunction. OBJECTIVE: To assess autonomic function and relate the findings to the severity and outcomes in COVID-19 patients. METHODS: We included consecutive patients with COVID-19 admitted to the 21st COVID-19 Department of the east campus of Renmin Hospital of Wuhan University from February 6 to March 7, 2020. Clinical data were collected. Heart rate variability (HRV), N-terminal pro-B-type natriuretic peptide (NT-proBNP), D-dimer, and lymphocytes and subsets counts were analysed at two time points: nucleic-acid test positive and negative. Psychological symptoms were assessed after discharge. RESULTS: All patients were divided into a mild group (13) and a severe group (21). The latter was further divided into two categories according to the trend of HRV. Severe patients had a significantly lower standard deviation of the RR intervals (SDNN) (P < 0.001), standard deviation of the averages of NN intervals (SDANN) (P < 0.001), and a higher ratio of low- to high-frequency power (LF/HF) (P = 0.016). Linear correlations were shown among SDNN, SDANN, LF/HF, and laboratory indices (P < 0.05). Immune function, D-dimer, and NT-proBNP showed a consistent trend with HRV in severe patients (P < 0.05), and severe patients without improved HRV parameters needed a longer time to clear the virus and recover (P < 0.05). CONCLUSION: HRV was associated with the severity of COVID-19. The changing trend of HRV was related to the prognosis, indicating that HRV measurements can be used as a non-invasive predictor for clinical outcome.

6.
Oxid Med Cell Longev ; 2020: 7106525, 2020.
Article in English | MEDLINE | ID: mdl-32148655

ABSTRACT

OBJECTIVE: In renal ischemia/reperfusion injury (RIRI), nuclear factor κB (NF-κB (NF-κB (NF. METHODS: Eighteen male Sprague-Dawley rats were randomly allocated into the sham group, the I/R group, and the VNS+I/R group, 6 rats per group. An RIRI model was induced by a right nephrectomy and blockade of the left renal pedicle vessels for 45 min. After 6 h of reperfusion, the blood samples and renal samples were collected. The VNS treatment was performed throughout the I/R process in the VNS+I/R group using specific parameters (20 Hz, 0.1 ms in duration, square waves) known to produce a small but reliable bradycardia. Blood was used for evaluation of renal function and inflammatory state. Renal injury was evaluated via TUNEL staining. Renal samples were harvested to evaluate renal oxidative stress, NF-κB (NF. RESULTS: The VNS treatment reduces serum creatinine (Cr) and blood urea nitrogen (BUN) levels. Simultaneously, the levels of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1-beta (IL-1ß) were significantly increased in the I/R group, but VNS treatment markedly ameliorated this inflammatory response. Furthermore, the VNS ameliorated oxidant stress and renal injury, indicated by a decrease in 3-nitrotyrosine (3-NT) formation and MDA and MPO levels and an increase in the SOD level compared to that in the I/R group. Finally, the VNS also significantly decreases NF-κB (NF. CONCLUSION: Our findings indicate that NF-κB activation increased iNOS expression and promoted RIRI and that VNS treatment attenuated RIRI by inhibiting iNOS expression, oxidative stress, and inflammation via NF-κB inactivation.κB (NF-κB (NF.


Subject(s)
NF-kappa B , Nitric Oxide Synthase Type II , Reperfusion Injury , Vagus Nerve Stimulation , Animals , Male , Rats , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Vagus Nerve Stimulation/methods
7.
Int J Cardiol ; 302: 59-66, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31889562

ABSTRACT

BACKGROUND: Previous studies indicated that inhibiting the cardiac autonomic nervous system (CANS) suppressed atrial fibrillation (AF). Clinical research revealed serum adiponectin (APN) exerted a beneficial influence on sympathetic and vagal tone in patients with type 2 diabetes. However, the effects of APN on CANS is unknown. This study aims to investigate whether APN could regulate CANS and suppress rapid atrial pacing (RAP)-induced AF. METHODS: Eighteen beagles were divided into the control group (saline plus sham RAP, N = 6), the RAP group (saline plus RAP, N = 6) and the APN + RAP group (APN plus RAP, N = 6). APN (10 µg, 0.1 µg/µL) or saline was microinjected into 4 major ganglionated plexi (GP) prior to RAP. Atrial electrophysiological parameters, anterior right GP (ARGP) function, neural activity and GP tissues were detected. RESULTS: Compared with the control treatment, RAP shortened effective refractory period (ERP) values at all sites and increased cumulative window of vulnerability (ΣWOV), ARGP function and neural activity, whereas APN injection reversed these changes. Mechanistically, APN ameliorated RAP-induced inflammatory response and down-regulated the expression of c-fos protein and nerve growth factor. Moreover, the APN receptors 1 and APN receptors 2 were detected both in neurons and in non-neuronal cells. APN pretreatment activated downstream adenosine monophosphate-activated protein kinase (AMPK) signaling, inhibited nuclear factor-kappa B signaling and promoted macrophage phenotype switching from proinflammatory to anti-inflammatory state. CONCLUSIONS: This study demonstrates that administration of APN into GP can suppress RAP-induced AF by regulating the CANS. APN signaling may provide a potential therapeutic target to AF.


Subject(s)
Adiponectin/metabolism , Atrial Fibrillation/physiopathology , Atrial Remodeling , Autonomic Nervous System/metabolism , Cardiac Pacing, Artificial/methods , Heart Atria/physiopathology , Heart Conduction System/physiopathology , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/therapy , Autonomic Nervous System/physiopathology , Biomarkers/metabolism , Disease Models, Animal , Dogs , Male
8.
Oxid Med Cell Longev ; 2019: 9549506, 2019.
Article in English | MEDLINE | ID: mdl-31205591

ABSTRACT

It has been demonstrated that vagus nerve stimulation (VNS) plays a protective role in ischemia/reperfusion (I/R) injury of various organs. The present study investigates the protective effect of VNS on hepatic I/R injury and the potential mechanisms. Male Sprague-Dawley rats were randomly allocated into three groups: the sham operation group (Sham; n = 6, sham surgery with sham VNS); the I/R group (n = 6, hepatic I/R surgery with sham VNS); and the VNS group (n = 6, hepatic I/R surgery plus VNS). The I/R model was established by 1 hour of 70% hepatic ischemia. Tissue samples and blood samples were collected after 6 hours of reperfusion. The left cervical vagus nerve was separated and stimulated throughout the whole I/R process. The stimulus intensity was standardized to the voltage level that slowed the sinus rate by 10%. VNS significantly reduced the necrotic area and cell death in I/R tissues. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were also decreased by VNS. In addition, VNS suppressed inflammation, oxidative stress, and apoptosis in I/R tissues. VNS significantly increased the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) in the liver. These data indicated that VNS may attenuate hepatic I/R injury by inhibiting inflammation, oxidative stress, and apoptosis possibly via the Nrf2/HO-1 pathway.


Subject(s)
Disease Models, Animal , Heme Oxygenase (Decyclizing)/metabolism , Liver Diseases/prevention & control , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reperfusion Injury/prevention & control , Vagus Nerve Stimulation/methods , Animals , Apoptosis , Heme Oxygenase (Decyclizing)/genetics , Liver Diseases/etiology , Liver Diseases/pathology , Male , NF-E2-Related Factor 2/genetics , Rats , Rats, Sprague-Dawley , Reperfusion Injury/etiology , Reperfusion Injury/pathology
9.
Oxid Med Cell Longev ; 2019: 6508328, 2019.
Article in English | MEDLINE | ID: mdl-31214281

ABSTRACT

Endothelin-1 (ET-1) is synthesized primarily by endothelial cells. ET-1 administration in vivo enhances the cardiac sympathetic afferent reflex and sympathetic activity. Previous studies have shown that sympathetic hyperactivity promotes malignant ventricular arrhythmia (VA). The aim of this study was to investigate whether ET-1 could activate the left stellate ganglion (LSG) and promote malignant VA. Twelve male beagle dogs who received local microinjections of saline (control, n = 6) and ET-1 into the LSG (n = 6) were included. The ventricular effective refractory period (ERP), LSG function, and LSG activity were measured at different time points. VA was continuously recorded for 1 h after left anterior descending occlusion (LADO), and LSG tissues were then collected for molecular detection. Compared to that of the control group, local ET-1 microinjection significantly decreased the ERP and increased the occurrence of VA. In addition, local microinjection of ET-1 increased the function and activity of the LSG in the normal and ischemic hearts. The expression levels of proinflammatory cytokines and the protein expression of c-fos and nerve growth factor (NGF) in the LSG were also increased. More importantly, endothelin A receptor (ETA-R) expression was found in the LSG, and its signaling was significantly activated in the ET-1 group. LSG activation induced by local ET-1 microinjection aggravates LADO-induced VA. Activated ETA-R signaling and the upregulation of proinflammatory cytokines in the LSG may be responsible for these effects.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Endothelial Cells/metabolism , Endothelin-1/metabolism , Myocardial Ischemia/physiopathology , Stellate Ganglion/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Dogs , Electrocardiography , Endothelial Cells/pathology , Humans , Inflammation Mediators/metabolism , Male , Nerve Growth Factors/metabolism , Receptor, Endothelin A/metabolism , Signal Transduction , Sympathetic Nervous System
10.
Biomed Pharmacother ; 117: 109062, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31177065

ABSTRACT

OBJECTIVE: Renal ischemia reperfusion (I/R) is not an isolated event; however, it results in remote organ dysfunction. Vagus nerve stimulation (VNS) has shown protective effects against renal I/R injury via an anti-inflammatory mechanism. This study aimed to investigate whether VNS could attenuate liver injury induced by renal I/R and identify the underlying mechanisms. METHODS: Eighteen healthy male Sprague-Dawley rats (200-250 g) were equally divided into three groups: sham group (sham surgery without I/R or VNS), I/R group (renal I/R) and VNS group (renal I/R plus VNS). The I/R model was established by excising the right kidney and then clamping the left renal pedicle with an occlusive nontraumatic microaneurysm clamp for 45 min followed by a 6-h reperfusion. The rats in the VNS group received spontaneous left cervical VNS with renal ischemia and reperfusion. At the end of the experiment, blood and liver tissues were collected to detect liver function, oxidative stress and inflammatory parameters. Additionally, TUNEL staining, real-time PCR, western blotting and hematoxylin and eosin staining of liver tissues were performed to assess liver injury and the underlying mechanisms. RESULTS: Kidney and liver function was severely damaged in the I/R group compared to the sham group. However, VNS significantly protected kidney and liver function. Rats treated with VNS revealed decreases in oxidative enzymes, apoptosis and levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in serum and liver compared with rats in the I/R group. Rats in the VNS group also showed increased antioxidant stress responses compared to rats in the I/R group. CONCLUSION: VNS exerts protective effects against liver injury from renal I/R via inhibiting oxidative stress and apoptosis, downregulating inflammatory cytokines and enhancing antioxidative capability in the liver, and may become a promising adjuvant therapeutic strategy for treating liver injury induced by acute renal injury.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Kidney/blood supply , Liver/injuries , Reperfusion Injury/complications , Reperfusion Injury/drug therapy , Vagus Nerve Stimulation , Acute Disease , Animals , Apoptosis , Cytokines/blood , Hepatocytes/metabolism , Hepatocytes/pathology , Inflammation Mediators/blood , Kidney/pathology , Kidney/physiopathology , Liver/enzymology , Liver/pathology , Liver/physiopathology , Male , Oxidation-Reduction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/blood , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
11.
EBioMedicine ; 44: 656-664, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30954457

ABSTRACT

BACKGROUND: We previously demonstrated the gut microbes-derived metabolite trimethylamine N-oxide (TMAO) could activate the atrial autonomic ganglion plexus and promote atrial arrhythmia. The cardiac sympathetic nervous system (CSNS) play important roles in modulating ventricular arrhythmia (VA). METHODS: Part 1: To test whether TMAO can directly activate the CSNS, we performed local injection of TMAO into the left stellate ganglion (LSG). Part 2: To test whether TMAO can indirectly activate the CSNS through the central nervous system, we performed intravenous injection of TMAO. Ventricular electrophysiology and LSG function and neural activity were measured before and after TMAO administration. Then, the left anterior descending coronary artery was ligated, and electrocardiograms were recorded for 1 h. At the end of the experiment, LSG and paraventricular nucleus (PVN) tissues were excised for molecular analyses. FINDINGS: Compared with the control, both intravenous and local TMAO administration significantly increased LSG function and activity, shortened effective refractory period, and aggravated ischemia-induced VA. Proinflammatory markers and c-fos in the LSG were also significantly upregulated in both TMAO-treated groups. Particularly, c-fos expression in PVN was significantly increased in the systemic TMAO administration group but not the local TMAO administration group. INTERPRETATION: The gut microbe-derived metabolite TMAO can activate the CSNS and aggravate ischemia-induced VA via the direct pathway through the LSG and the indirect pathway through central autonomic activation. FUND: This work was supported by the National Key R&D Program of China [2017YFC1307800], and the National Natural Science Foundation of China [81530011, 81770364, 81570463, 81871486, 81600395, 81600367 and 81700444].


Subject(s)
Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Autonomic Nervous System/metabolism , Autonomic Nervous System/physiopathology , Gastrointestinal Microbiome , Methylamines/metabolism , Myocardial Ischemia/complications , Signal Transduction , Arrhythmias, Cardiac/physiopathology , Cytokines/metabolism , Electrocardiography , Electrophysiological Phenomena , Humans , Inflammation Mediators/metabolism , Stellate Ganglion/metabolism
12.
Front Physiol ; 10: 200, 2019.
Article in English | MEDLINE | ID: mdl-30914967

ABSTRACT

The cardiac autonomic nervous system (CANS) is associated with modulation of cardiac electrophysiology and arrhythmogenesis. In this mini review, we will briefly introduce cardiac autonomic anatomy and autonomic activity in ventricular arrhythmias (VAs) and discuss novel approaches of CANS modulation for treating VAs. Studies over the decades have provided a better understanding of cardiac autonomic innervation and revealed overwhelming evidence of the relationship between autonomic tone and VAs. A high sympathetic tone and low parasympathetic (vagal) tone are considered as the major triggers of VAs in patients with myocardial ischemia, which can cause sudden cardiac death. In recent years, novel methods of autonomic neuromodulation have been investigated to prevent VAs, and they have been verified as being beneficial for malignant VAs in animal models and humans. The clinical outcome of autonomic neuromodulation depends on the level of cardiac neuraxis, stimulation parameters, and patient's pathological status. Since autonomic modulation for VA treatment is still in the early stage of clinical application, more basic and clinical studies should be performed to clarify these mechanisms and optimize autonomic neuromodulation therapies for patients with VAs in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...