Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 357: 141951, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626815

ABSTRACT

UV/Fe3+ and persulfate are two promising advanced oxidative degradation systems for in situ remediation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), yet a lack of comprehensive understanding of the degradation mechanisms. For the first time, we used density functional theory (DFT) to calculate the entire reaction pathways of the degradation of PFOA/PFOS in water by UV/Fe3+ and persulfate. In addition, we have deeply explored the different attack pathways driven by •OH and SO4-•, and found that SO4-• determines PFOA/PFOS to obtain PFOA/PFOS free radicals through single electron transfer to initiate the degradation reaction, while •OH determines the speed of PFOA/PFOS degradation reaction. Both degradation reactions were thermodynamically advantageous and kinetically feasible under calculated conditions. Based on the thermodynamic data, persulfate was found to be more favorable for the advanced oxidative degradation of Perfluorinated compounds (PFCs). Moreover, for SO4-• and •OH co-existing in the persulfate system, pH will affect the presence and concentration of these two types of free radicals, and low pH is not necessary for the degradation of PFOA/PFOS in the persulfate system. These results can considerably advance our understanding of the PFOA/PFOS degradation process in advanced oxidation processes (AOPs), which is driven by •OH and SO4-•. This study provides a DFT calculation process for the mechanism calculation of advanced oxidation degradation of other types of PFCs pollutants, hoping to elucidate the future development of PFCs removal. Further research should focus on determining the advanced oxidation degradation pathways of other types of PFCs, to support the development of computational studies on the advanced oxidation degradation of PFCs.


Subject(s)
Alkanesulfonic Acids , Caprylates , Fluorocarbons , Oxidation-Reduction , Water Pollutants, Chemical , Fluorocarbons/chemistry , Caprylates/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Alkanesulfonic Acids/chemistry , Ultraviolet Rays , Sulfates/chemistry , Density Functional Theory , Thermodynamics , Environmental Restoration and Remediation/methods , Iron/chemistry
2.
J Am Chem Soc ; 145(43): 23527-23532, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37788159

ABSTRACT

To develop new radical synthesis strategies, a profound understanding of the electronic transfer mechanism is critical. An activation model called relayed proton-coupled electron transfer (relayed-PCET) was developed and investigated for chiral phosphoric acid-catalyzed diradical reactions by density functional theory (DFT). The driving force of electron transfer from the nucleophile to the electrophile is the proton transfer that occurs via the chiral phosphoric acid (CPA) catalyst to the electrophile. Moreover, the origins of the selectivity can be explained by distortion of the catalyst, favorable hydrogen bonding, and strong interactions of the substrates with substituents of the CPAs.

3.
J Hazard Mater ; 460: 132316, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37634377

ABSTRACT

Assisted wet deposition methods to localize the active phase metal on the carrier surface and prevent atomic aggregation during conventional heat treatment are strongly preferred. Herein, single-atom cobalt catalysts (SA-Co-PCN) with different metal-central content were target-prepared using a combination of impregnation and secondary annealing on polymerized carbon nitride (PCN) through reticular confinement. Fitting the coordination configuration of the Co-N pathway within the first coordination shell according to quantitative EXAFS indicated that the ligancy of Co-N was 4. The removal efficiency of representative micropollutants in the SA-Co-PCN/PMS system achieved 100% within 15 min. The outstanding degradation properties of micropollutants were ascribed to the SA-Co-PCN boosts PMS to a 1O2-dominated system. Moreover, the effects of substituents on the degradation behavior and ecotoxicology of sulfonamides (SAs) in PMS-activated systems were investigated in depth. The combination of DFT theoretical calculations and LC-MS further confirmed that the similar electron-rich sites on the SAs molecules allowed for commonality in the degradation pathway. Both S-N bond and C-S bond fragments became the initial attack and cleavage sites in the series of SAs. Ecotoxicity predictions indicated that most intermediates of SAs exhibited lower acute and chronic toxicity, especially acute toxicity, than the parent compounds. ENVIRONMENTAL IMPLICATION: Assisted wet deposition to localize the active phase metal on the carrier surface allows easy target formation of single-atom cobalt catalysts (SA-Co-PCN), which could boost PMS to a 1O2-dominated system for efficient oxidation of typical micropollutants. The degradation behavior and ecotoxicology of sulfonamides in the SA-Co-PCN/PMS system were investigated in depth, revealing that most intermediates of sulfonamides exhibited lower acute and chronic toxicity, especially acute toxicity, than the parent compounds. This work provides a strategy for the development of facilely prepared single-atom catalysts and contributes to the development and application potential of PMS advanced oxidation technology for water pollution control.

SELECTION OF CITATIONS
SEARCH DETAIL
...