Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 954: 175895, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37422122

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease, characterized by progressive cognitive dysfunction and memory loss. However, the disease-modifying treatments for AD are still lacking. Traditional Chinese herbs, have shown their potentials as novel treatments for complex diseases, such as AD. PURPOSE: This study was aimed at investigating the mechanism of action (MOA) of Acanthopanax senticosusin (AS) for treatment of AD. METHODS: In this study, we firstly identified the chemical constituents in Acanthopanax senticosusin (AS) utilizing ultra-high performance liquid chromatography coupled with Q-TOF-mass spectrometry (UPLC-Q-TOF-MS), and next built the drug-target network of these compounds. We also performed the systems pharmacology-based analysis to preliminary explore the MOA of AS against AD. Moreover, we applied the network proximity approach to identify the potential anti-AD components in AS. Finally, experimental validations, including animal behavior test, ELISA and TUNEL staining, were conducted to verify our systems pharmacology-based analysis. RESULTS: 60 chemical constituents in AS were identified via the UPLC-Q-TOF-MS approach. The systems pharmacology-based analysis indicated that AS might exert its therapeutic effects on AD via acetylcholinesterase and apoptosis signaling pathway. To explore the material basis of AS against AD, we further identified 15 potential anti-AD components in AS. Consistently, in vivo experiments demonstrated that AS could protect cholinergic nervous system damage and decrease neuronal apoptosis caused by scopolamine. CONCLUSION: Overall, this study applied systems pharmacology approach, UPLC-Q-TOF-MS, network analysis, and experimental validation to decipher the potential molecular mechanism of AS against AD.


Subject(s)
Alzheimer Disease , Drugs, Chinese Herbal , Eleutherococcus , Neurodegenerative Diseases , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Network Pharmacology , Tandem Mass Spectrometry/methods , Acetylcholinesterase , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Chromatography, High Pressure Liquid/methods
2.
Chin Med ; 18(1): 53, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37170155

ABSTRACT

BACKGROUND: As a major risk factor for neurodegenerative diseases, aging has become a heavy health care burden worldwide. Age-related decline in mitochondrial function and oxidative stress is strongly associated with neurodegeneration. The previous study demonstrated that Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine formula, is effective in reducing neurodegeneration. METHODS: This study is the first to investigate the effect of BSYZ on D-gal-induced learning memory in rats. Secondly, the potential metabolic mechanism of BSYZ was explored by 1H-NMR metabolomics analysis. Then based on the comparison of differential metabolites implied that BSYZ ameliorated mitochondrial dysfunction through choline metabolic pathway in D-gal-treated rats. Finally, pharmacological validation was conducted to explore the effects of BSYZ on D-gal-induced oxidative stress, neuroinflammation, and neuronal apoptosis. RESULTS: Our data showed that BSYZ increased aspartate and betaine levels, while decreasing choline levels. Furthermore, BSYZ also increased the proteins level of CHDH and BHMT to regulate choline metabolic pathway. Meanwhile, BSYZ alleviated mitochondrial damage and oxidative stress, including enhanced ATP production and the ratio of NAD+/NADH, reduced the level of MDA, enhanced GSH and SOD activity, upregulated the expressions of p-AMPK, SIRT1 proteins. In addition, BSYZ downregulated the levels of inflammatory cytokines, such as TNF-α, IL-1ß and IL-6, as well as suppressed Bcl-2 proteins family dependent apoptosis. CONCLUSION: BSYZ treatment effectively rescues neurobehavioral impairment by improving mitochondrial dysfunction, oxidative stress, neuroinflammation and neuroapoptosis via AMPK/SIRT1 pathway in D-gal-induced aging.

3.
Molecules ; 29(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38202603

ABSTRACT

Osthole, a natural coumarin found in various medicinal plants, has been previously reported to have neuroprotective effects. However, the specific mechanism by which Osthole alleviates dysmnesia associated with Alzheimer's disease (AD) remains unclear. This study aimed to investigate the neuroprotective properties of Osthole against cognitive impairment in rats induced by D-galactose and elucidate its pharmacological mechanism. The rat model was established by subcutaneously injecting D-galactose at a dose of 150 mg/kg/day for 56 days. The effect of Osthole on cognitive impairment was evaluated by behavior and biochemical analysis. Subsequently, a combination of in silico prediction and experimental validation was performed to verify the network-based predictions, using western blot, Nissl staining, and immunofluorescence. The results demonstrate that Osthole could improve memory dysfunction induced by D-galactose in Sprague Dawley male rats. A network proximity-based approach and integrated pathways analysis highlight two key AD-related pathological processes that may be regulated by Osthole, including neuronal apoptosis, i.e., neuroinflammation. Among them, the pro-apoptotic markers (Bax), anti-apoptotic protein (Bcl-2), the microgliosis (Iba-1), Astro-cytosis (GFAP), and inflammatory cytokines (TNF-R1) were evaluated in both hippocampus and cortex. The results indicated that Osthole significantly ameliorated neuronal apoptosis and neuroinflammation in D-galactose-induced cognitive impairment rats. In conclusion, this study sheds light on the pharmacological mechanism of Osthole in mitigating D-galactose-induced memory impairment and identifies Osthole as a potential drug candidate for AD treatment, targeting multiple signaling pathways through network proximity and integrated pathways analysis.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Rats , Animals , Galactose/adverse effects , Neuroinflammatory Diseases , Rats, Sprague-Dawley , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Coumarins/pharmacology , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...