Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Inf Technol Biomed ; 15(5): 709-15, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21606039

ABSTRACT

A novel segmentation framework for a prepless virtual colonoscopy (VC) is presented, which reduces the necessity for colon cleansing before the CT scan. The patient is injected rectally with a water-soluble iodinated contrast medium using manual insufflators and a small rectal catheter. Compared to the air-based contrast medium, this technique can better preserve the color lumen and reduce the partial volume effect. However, the contrast medium, together with the fecal materials and air, makes colon wall segmentation challenging. Our solution makes no assumptions about the shape, size, and location of the fecal material in the colon. This generality allows us to label the fecal material accurately and extract the colon wall reliably. The accuracy of our technique has been verified on 60 human subjects. Compared with current VC technologies, our method is shown to be better in terms of both sensitivity and specificity. Further, in our experiments, the accuracy of the technique was comparable to that of optical colonoscopy results.


Subject(s)
Colon/anatomy & histology , Colonoscopy/methods , Algorithms , Contrast Media , Humans , User-Computer Interface
2.
Article in English | MEDLINE | ID: mdl-20879248

ABSTRACT

CT colonography (CTC) is a minimally invasive screening technique for colorectal polyps and colon cancer. Since electronic colon cleansing (ECC) cannot completely remove the presence of pseudo-polyps, most CTC protocols acquire both prone and supine images to improve the visualization of the lumen wall and to reduce false positives. Comparisons between the prone and supine images can be facilitated by computerized registration between the scans. In this paper, we develop a fully automatic method for registering colon surfaces extracted from prone and supine images. The algorithm uses shape spectrum to extract the shape characteristics which are employed as the surface signature to find the correspondent regions between the prone and supine lumen surfaces. Our experimental results demonstrate an accuracy of 12.6 +/- 4.20 mm over 20 datasets. It also shows excellent potential in reducing the false positive when it is used to determine polyps through correspondences between prone and supine images.


Subject(s)
Colon/diagnostic imaging , Colonography, Computed Tomographic/methods , Prone Position , Radiographic Image Interpretation, Computer-Assisted/methods , Subtraction Technique , Supine Position , Algorithms , Humans , Pattern Recognition, Automated/methods , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
3.
IEEE Trans Vis Comput Graph ; 15(6): 1193-200, 2009.
Article in English | MEDLINE | ID: mdl-19834189

ABSTRACT

This paper formalizes a novel, intrinsic geometric scale space (IGSS) of 3D surface shapes. The intrinsic geometry of a surface is diffused by means of the Ricci flow for the generation of a geometric scale space. We rigorously prove that this multiscale shape representation satisfies the axiomatic causality property. Within the theoretical framework, we further present a feature-based shape representation derived from IGSS processing, which is shown to be theoretically plausible and practically effective. By integrating the concept of scale-dependent saliency into the shape description, this representation is not only highly descriptive of the local structures, but also exhibits several desired characteristics of global shape representations, such as being compact, robust to noise and computationally efficient. We demonstrate the capabilities of our approach through salient geometric feature detection and highly discriminative matching of 3D scans.

4.
IEEE Trans Vis Comput Graph ; 14(6): 1643-50, 2008.
Article in English | MEDLINE | ID: mdl-18989021

ABSTRACT

This paper presents a novel and efficient surface matching and visualization framework through the geodesic distance-weighted shape vector image diffusion. Based on conformal geometry, our approach can uniquely map a 3D surface to a canonical rectangular domain and encode the shape characteristics (e.g., mean curvatures and conformal factors) of the surface in the 2D domain to construct a geodesic distance-weighted shape vector image, where the distances between sampling pixels are not uniform but the actual geodesic distances on the manifold. Through the novel geodesic distance-weighted shape vector image diffusion presented in this paper, we can create a multiscale diffusion space, in which the cross-scale extrema can be detected as the robust geometric features for the matching and registration of surfaces. Therefore, statistical analysis and visualization of surface properties across subjects become readily available. The experiments on scanned surface models show that our method is very robust for feature extraction and surface matching even under noise and resolution change. We have also applied the framework on the real 3D human neocortical surfaces, and demonstrated the excellent performance of our approach in statistical analysis and integrated visualization of the multimodality volumetric data over the shape vector image.


Subject(s)
Artificial Intelligence , Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Nerve Fibers, Myelinated/ultrastructure , Pattern Recognition, Automated/methods , Algorithms , Humans , Image Enhancement/methods , Sensitivity and Specificity
5.
Article in English | MEDLINE | ID: mdl-18982588

ABSTRACT

In this paper, we present a novel and efficient surface matching framework through shape image representation. This representation allows us to simplify a 3D surface matching problem to a 2D shape image matching problem. Furthermore, we present a shape image diffusion-based method to find the most robust features to construct the matching and registration of surfaces. This is particularly important for inter-subject surfaces from medical scans of different subjects since these surfaces exhibit the inherited physiological variances among subjects. We conducted extensive experiments on real 3D human neocortical surfaces, which demonstrate the excellent performance of our approach in terms of accuracy and robustness.


Subject(s)
Artificial Intelligence , Brain/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Subtraction Technique , Algorithms , Humans , Image Enhancement/methods
SELECTION OF CITATIONS
SEARCH DETAIL