Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(9): 093603, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30230888

ABSTRACT

Cavity-enhanced single photon sources exhibit mode-locked biphoton states with comblike correlation functions. Our ultrabright source additionally emits single photon pairs as well as two-photon NOON states, dividing the output into an even and an odd comb, respectively. With even-comb photons we demonstrate revivals of the typical nonclassical Hong-Ou-Mandel interference up to the 84th dip, corresponding to a path length difference exceeding 100 m. With odd-comb photons we observe single photon interference fringes modulated over twice the displacement range of the Hong-Ou-Mandel interference.

2.
Phys Rev Lett ; 115(24): 243605, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26705635

ABSTRACT

We demonstrate how the physics of multiboson correlation interference leads to the computational complexity of linear optical interferometers based on correlation measurements in the degrees of freedom of the input bosons. In particular, we address the task of multiboson correlation sampling (MBCS) from the probability distribution associated with polarization- and time-resolved detections at the output of random linear optical networks. We show that the MBCS problem is fundamentally hard to solve classically even for nonidentical input photons, regardless of the color of the photons, making it also very appealing from an experimental point of view. These results fully manifest the quantum computational supremacy inherent to the fundamental nature of quantum interference.

3.
Phys Rev Lett ; 114(24): 243601, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26196976

ABSTRACT

We provide a compact full description of multiboson correlation measurements of arbitrary order N in passive linear interferometers with arbitrary input single-photon pure states. This allows us to physically analyze the novel problem of multiboson correlation sampling at the output of random linear interferometers. Our results also describe general multiboson correlation landscapes for an arbitrary number of input single photons and arbitrary interferometers. In particular, we use two different schemes to demonstrate, respectively, arbitrary-order quantum beat interference and 100% visibility entanglement correlations even for input photons distinguishable in their frequencies.

SELECTION OF CITATIONS
SEARCH DETAIL
...