Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
2.
Chem Commun (Camb) ; 57(77): 9914-9917, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34498020

ABSTRACT

We study the influence of the physical and chemical structure on the chiroptical response of fluorene-based polymeric systems, namely poly(9,9-dioctylfluorene) (PFO) and the donor-acceptor type copolymer poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT). We reveal the significance of electric-magnetic coupling, at both short (molecular-level) and intermediate (delocalised over multiple polymer chains) length scales, on the magnitude of the dissymmetry. These findings provide a framework for the design of new materials with an enhanced chiroptical response.

3.
Angew Chem Int Ed Engl ; 60(21): 12066-12073, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33666324

ABSTRACT

We report the characterization of rotaxanes based on a carbazole-benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.

4.
ACS Nano ; 13(7): 8099-8105, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31241299

ABSTRACT

The emission of circularly polarized light is central to many applications, including data storage, optical quantum computation, biosensing, environmental monitoring, and display technologies. An emerging method to induce (chiral) circularly polarized (CP) electroluminescence from the active layer of polymer light-emitting diodes (polymer OLEDs; PLEDs) involves blending achiral polymers with chiral small-molecule additives, where the handedness/sign of the CP light is controlled by the absolute stereochemistry of the small molecule. Through the in-depth study of such a system we report an interesting chiroptical property: the ability to tune the sign of CP light as a function of active layer thickness for a fixed enantiomer of the chiral additive. We demonstrate that it is possible to achieve both efficient (4.0 cd/A) and bright (8000 cd/m2) CP-PLEDs, with high dissymmetry of emission of both left-handed (LH) and right-handed (RH) light, depending on thickness (thin films, 110 nm: gEL = 0.51, thick films, 160 nm: gEL = -1.05, with the terms "thick" and "thin" representing the upper and lower limits of the thickness regime studied), for the same additive enantiomer. We propose that this arises due to an interplay between localized CP emission originating from molecular chirality and CP light amplification or inversion through a chiral medium. We link morphological, spectroscopic, and electronic characterization in thin films and devices with theoretical studies in an effort to determine the factors that underpin these observations. Through the control of active layer thickness and device architecture, this study provides insights into the mechanisms that result in CP luminescence and high performance from CP-PLEDs, as well as demonstrating new opportunities in CP photonic device design.

5.
J Comput Chem ; 40(25): 2191-2199, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31140200

ABSTRACT

Molecules and materials that absorb and/or emit light form a central part of our daily lives. Consequently, a description of their excited-state properties plays a crucial role in designing new molecules and materials with enhanced properties. Due to its favorable balance between high computational efficiency and accuracy, time-dependent density functional theory (TDDFT) is often a method of choice for characterizing these properties. However, within standard approximations to the exchange-correlation functional, it remains challenging to achieve a balanced description of all excited states, especially for those exhibiting charge-transfer (CT) characteristics. In this work, we have applied two approaches, namely, the optimal tuning and triplet tuning methods, for a nonempirical definition of range-separated functionals to improve the description of excited states within TDDFT. This is applied to study the CT properties of two thermally activated delayed fluorescence emitters, namely, PTZ-DBTO2 and TAT-3DBTO2 . We demonstrate the connection between the two methods, the performance of each in the presence on multiple excited states of different characters and the geometry dependence of each method especially relevant in the context of developing size-consistent potential energy surfaces. © 2019 Wiley Periodicals, Inc.

SELECTION OF CITATIONS
SEARCH DETAIL