Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Luminescence ; 34(1): 23-38, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30421538

ABSTRACT

Trivalent europium (Eu3+ ) and terbium (Tb3+ ) ions are important activator centers used in different host lattices to produce red and green emitting materials. The current work shows the design of new clay minerals to act as host lattices for rare earth (RE) ions. Based on the hectorite structure, nano-chlorohectorites and nano-fluorohectorites were developed by replacing the OH- present in the hectorite structure with Cl- or F- , thus avoiding the luminescence quenching expected due to the OH- groups. The produced matrices were characterized through X-ray powder diffraction (XPD), transmission electron microscopy (TEM), FT-IR, 29 Si MAS (magic angle spinning) NMR, nitrogen sorption, thermogravimetry-differential scanning calorimetry (TGA-DSC) and luminescence measurements, indicating all good features expected from a host lattice for RE ions. The nano-clay materials were successfully doped with Eu3+ and/or Tb3+ to yield materials preserving the hectorite crystal structure and showing the related luminescence emissions. Thus, the present work shows that efficient RE3+ luminescence can be obtained from clays without the use of organic 'antenna' molecules.


Subject(s)
Europium/chemistry , Nanostructures/chemistry , Terbium/chemistry , Clay , Color , Luminescent Measurements , Magnetic Resonance Spectroscopy/methods , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction
2.
ACS Appl Mater Interfaces ; 10(25): 21730-21739, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29870224

ABSTRACT

Zinc carbonate and a mixed-phase zinc carbonate were precipitated selectively on hot dip galvanized steel in the presence of CO2 and water. The zinc carbonate was precipitated as a uniform layer with cubic superficial appearance, while the mixed-phase zinc carbonate was precipitated as nanowires. The distinct structures could be formed separately or as a dual structure with nanowires on the outermost surface. The barrier properties were improved by the both patina forms; a significant increase in surface hydrophobicity was obtained. The dual patina structure was successfully coated with an organic coating, and the intact wet CO2-induced patina with both structures was confirmed within the coating. The formed carbonates can be further converted to zinc oxide by calcination, preserving the delicate structures, which opens a wide range of potential applications for the nanostructured ZnO in a variety of future electronic and optoelectronic devices.

3.
ACS Appl Mater Interfaces ; 8(18): 11592-602, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27088662

ABSTRACT

Synthetic hackmanites, Na8Al6Si6O24(Cl,S)2, showing efficient purple tenebrescence and blue/white persistent luminescence were studied using different spectroscopic techniques to obtain a quantified view on the storage and release of optical energy in these materials. The persistent luminescence emitter was identified as impurity Ti(3+) originating from the precursor materials used in the synthesis, and the energy storage for persistent luminescence was postulated to take place in oxygen vacancies within the aluminosilicate framework. Tenebrescence, on the other hand, was observed to function within the Na4(Cl,S) entities located in the cavities of the aluminosilicate framework. The mechanism of persistent luminescence and tenebrescence in hackmanite is presented for the first time.

SELECTION OF CITATIONS
SEARCH DETAIL
...