Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 5: 294, 2014.
Article in English | MEDLINE | ID: mdl-24966856

ABSTRACT

DNA-binding transcription factors (TFs) are essential components of transcriptional regulatory networks in bacteria. LacI-family TFs (LacI-TFs) are broadly distributed among certain lineages of bacteria. The majority of characterized LacI-TFs sense sugar effectors and regulate carbohydrate utilization genes. The comparative genomics approaches enable in silico identification of TF-binding sites and regulon reconstruction. To study the function and evolution of LacI-TFs, we performed genomics-based reconstruction and comparative analysis of their regulons. For over 1300 LacI-TFs from over 270 bacterial genomes, we predicted their cognate DNA-binding motifs and identified target genes. Using the genome context and metabolic subsystem analyses of reconstructed regulons, we tentatively assigned functional roles and predicted candidate effectors for 78 and 67% of the analyzed LacI-TFs, respectively. Nearly 90% of the studied LacI-TFs are local regulators of sugar utilization pathways, whereas the remaining 125 global regulators control large and diverse sets of metabolic genes. The global LacI-TFs include the previously known regulators CcpA in Firmicutes, FruR in Enterobacteria, and PurR in Gammaproteobacteria, as well as the three novel regulators-GluR, GapR, and PckR-that are predicted to control the central carbohydrate metabolism in three lineages of Alphaproteobacteria. Phylogenetic analysis of regulators combined with the reconstructed regulons provides a model of evolutionary diversification of the LacI protein family. The obtained genomic collection of in silico reconstructed LacI-TF regulons in bacteria is available in the RegPrecise database (http://regprecise.lbl.gov). It provides a framework for future structural and functional classification of the LacI protein family and identification of molecular determinants of the DNA and ligand specificity. The inferred regulons can be also used for functional gene annotation and reconstruction of sugar catabolic networks in diverse bacterial lineages.

2.
BMC Genomics ; 12 Suppl 1: S3, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21810205

ABSTRACT

BACKGROUND: Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. RESULTS: To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR), numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation) and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp). CONCLUSIONS: We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S. oneidensis MR-1. Analysis of correlations in gene expression patterns helps to interpret the reconstructed regulatory network. The inferred regulatory interactions will provide an additional regulatory constrains for an integrated model of metabolism and regulation in S. oneidensis MR-1.


Subject(s)
Gene Regulatory Networks , Regulon , Shewanella/genetics , Shewanella/metabolism , Acetylglucosamine/metabolism , Amino Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Carbohydrate Metabolism , DNA-Binding Proteins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Fatty Acids/metabolism , Gene Expression Regulation, Bacterial , Genome, Bacterial , Genomics/methods , Multigene Family , Repressor Proteins/genetics , Riboswitch , Transcription Factors/genetics , Transcription Factors/metabolism
3.
In Silico Biol ; 10(3): 163-83, 2010.
Article in English | MEDLINE | ID: mdl-22430290

ABSTRACT

Unlike evolution of genes and proteins, evolution of regulatory systems is a relatively new area of research. In particular, little systematic study has been done on evolution of DNA binding motifs in transcription factor families. We suggest an algorithm that reconstructs the most parsimonious scenario for changes in DNA binding motifs along an evolutionary tree of transcription factor binding sites. The algorithm was validated on several artificial datasets and then applied to reconstruct the evolutionary history of the NrdR, MntR, LacI, FNR, Irr, Fur and Rrf2 transcription factor families. The algorithm seems to be sufficiently robust to be applicable in realistic situations. In most transcription factor families the changes in binding motifs are limited to several branches. Changes in consensus nucleotides proceed via an intermediate stage when the respective position is not conserved.


Subject(s)
Bacterial Proteins/genetics , Evolution, Molecular , Models, Genetic , Transcription Factors/genetics , Algorithms , Bacteria/genetics , Base Sequence , Binding Sites , Consensus Sequence , Phylogeny , Regulatory Elements, Transcriptional
4.
Nucleic Acids Res ; 38(Database issue): D111-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19884135

ABSTRACT

The RegPrecise database (http://regprecise.lbl.gov) was developed for capturing, visualization and analysis of predicted transcription factor regulons in prokaryotes that were reconstructed and manually curated by utilizing the comparative genomic approach. A significant number of high-quality inferences of transcriptional regulatory interactions have been already accumulated for diverse taxonomic groups of bacteria. The reconstructed regulons include transcription factors, their cognate DNA motifs and regulated genes/operons linked to the candidate transcription factor binding sites. The RegPrecise allows for browsing the regulon collections for: (i) conservation of DNA binding sites and regulated genes for a particular regulon across diverse taxonomic lineages; (ii) sets of regulons for a family of transcription factors; (iii) repertoire of regulons in a particular taxonomic group of species; (iv) regulons associated with a metabolic pathway or a biological process in various genomes. The initial release of the database includes approximately 11,500 candidate binding sites for approximately 400 orthologous groups of transcription factors from over 350 prokaryotic genomes. Majority of these data are represented by genome-wide regulon reconstructions in Shewanella and Streptococcus genera and a large-scale prediction of regulons for the LacI family of transcription factors. Another section in the database represents the results of accurate regulon propagation to the closely related genomes.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Algorithms , Amino Acid Motifs , Binding Sites , Computational Biology/trends , DNA/chemistry , Databases, Protein , Genome, Bacterial , Information Storage and Retrieval/methods , Internet , Operon , Sequence Alignment , Software , Transcription Factors/metabolism
5.
Proc Natl Acad Sci U S A ; 104(35): 13948-53, 2007 Aug 28.
Article in English | MEDLINE | ID: mdl-17709750

ABSTRACT

What are the forces that shape the structure of prokaryotic genomes: the order of genes, their proximity, and their orientation? Coregulation and coordinated horizontal gene transfer are believed to promote the proximity of functionally related genes and the formation of operons. However, forces that influence the structure of the genome beyond the level of a single operon remain unknown. Here, we show that the biophysical mechanism by which regulatory proteins search for their sites on DNA can impose constraints on genome structure. Using simulations, we demonstrate that rapid and reliable gene regulation requires that the transcription factor (TF) gene be close to the site on DNA the TF has to bind, thus promoting the colocalization of TF genes and their targets on the genome. We use parameters that have been measured in recent experiments to estimate the relevant length and times scales of this process and demonstrate that the search for a cognate site may be prohibitively slow if a TF has a low copy number and is not colocalized. We also analyze TFs and their sites in a number of bacterial genomes, confirm that they are colocalized significantly more often than expected, and show that this observation cannot be attributed to the pressure for coregulation or formation of selfish gene clusters, thus supporting the role of the biophysical constraint in shaping the structure of prokaryotic genomes. Our results demonstrate how spatial organization can influence timing and noise in gene expression.


Subject(s)
DNA/chemistry , Gene Expression Regulation , Genome , Transcription Factors/genetics , Transcription, Genetic , Bacteria/genetics , Binding Sites , Biophysical Phenomena , Biophysics , DNA/genetics , Homeostasis , Models, Genetic , Multigene Family , Nucleic Acid Conformation , Protein Biosynthesis , Proteins/chemistry , Proteins/genetics , Transcription Factors/metabolism
6.
J Biol Chem ; 281(40): 29872-85, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-16857666

ABSTRACT

We used a comparative genomics approach implemented in the SEED annotation environment to reconstruct the chitin and GlcNAc utilization subsystem and regulatory network in most proteobacteria, including 11 species of Shewanella with completely sequenced genomes. Comparative analysis of candidate regulatory sites allowed us to characterize three different GlcNAc-specific regulons, NagC, NagR, and NagQ, in various proteobacteria and to tentatively assign a number of novel genes with specific functional roles, in particular new GlcNAc-related transport systems, to this subsystem. Genes SO3506 and SO3507, originally annotated as hypothetical in Shewanella oneidensis MR-1, were suggested to encode novel variants of GlcN-6-P deaminase and GlcNAc kinase, respectively. Reconstitution of the GlcNAc catabolic pathway in vitro using these purified recombinant proteins and GlcNAc-6-P deacetylase (SO3505) validated the entire pathway. Kinetic characterization of GlcN-6-P deaminase demonstrated that it is the subject of allosteric activation by GlcNAc-6-P. Consistent with genomic data, all tested Shewanella strains except S. frigidimarina, which lacked representative genes for the GlcNAc metabolism, were capable of utilizing GlcNAc as the sole source of carbon and energy. This study expands the range of carbon substrates utilized by Shewanella spp., unambiguously identifies several genes involved in chitin metabolism, and describes a novel variant of the classical three-step biochemical conversion of GlcNAc to fructose 6-phosphate first described in Escherichia coli.


Subject(s)
Acetylglucosamine/metabolism , Genome, Bacterial , Shewanella/genetics , Shewanella/metabolism , Signal Transduction/genetics , Acetylglucosamine/chemistry , Chitin/metabolism , Shewanella/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...