Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 22(2): 898-906, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33410657

ABSTRACT

A new type of polysaccharide (hemicellulose) nanocrystal, bearing the shape of an anisotropic nanoflake, emerged from a dimethyl sulfoxide (DMSO) dispersion of wood-based xylan through heat-induced crystallization. The dimensions of these xylan nanocrystals were controlled by the crystallization conditions. Sharp signals in solid-state NMR indicated a well-ordered crystal structure. The unit cell is constituted of two asymmetric xylose residues, and DMSO molecules resided in a host-guest type of arrangement with more than one local environment. This corroborates with the identical 1H NMR relaxation time between DMSO and xylan, indicative of intimate mixing of the two at the tens of nanometer length scale. X-ray and electron diffraction indicated a 2-fold helical helix along the chain in a monoclinic unit cell with an antiparallel arrangement, with chains placed on the 2-fold helix axes: at the corner and at the center. The 2-fold helical structure is unique for xylan for which only a 3-fold helical form has been reported. The DMSO molecules participated in the crystallization, and they were shown to be vital in stabilizing the crystalline structure. The manipulation of temperature, concentration, and incubation time of the xylan/DMSO dispersion provided pathways for the crystallization to form size-adjustable nanocrystals. As 20-30% of biomass consists of hemicelluloses, this work will serve as a starting point to understand the controlled assembly of hemicelluloses to discover their full application potential.


Subject(s)
Dimethyl Sulfoxide , Nanoparticles , Crystallization , Temperature , Xylans
2.
Biomacromolecules ; 20(6): 2286-2294, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31021605

ABSTRACT

This study relates to the release of non-cellulosic components (cell wall heteropolysaccharides, lignin, and extractives) from swollen wood fibers in the presence of an anionic surfactant (sodium dodecyl sulfate, SDS) at submicellar concentrations. Highly surface-active aggregates form between SDS and the leached, non-cellulosic components, which otherwise do not occur in the presence of cationic or nonionic surfactants. The in situ and efficient generation of liquid foams in the presence of the leached species is demonstrated. The foaming capacity and foam stability, as well as the foam's structure, are determined as a function of the composition of the aqueous suspension. The results indicate that naturally occurring components bound to wood fibers are extractable solely with aqueous solutions of the anionic surfactant. Moreover, they can form surface-active aggregates that have a high foaming capacity. The results further our understanding of residual cell wall components and their role in the generation of foams.


Subject(s)
Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Wood/chemistry , Anions/chemistry
3.
Carbohydr Polym ; 177: 126-134, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28962750

ABSTRACT

The lack of simple differentiation of all-polysaccharide-film components in nanoscale hinders unveiling their structure-property dependency. Submicron hierarchy of films of cellulose nanofibrils (CNFs) and carbohydrate-based additives was revealed via visualization of the components by their differentiating adhesion to an Atomic Force Microscope (AFM) tip. The differentiation of the film components revealed that distribution of hydroxypropylated hemicellulose in the CNF matrix could be tuned by addition of a plasticizer. The hemicellulose hydroxypropylation degree of substitution (DS) was detected to be another parameter affecting the film structure due to the water-solubility depending on the DS. This was further verified via Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). The translucent, self-standing films comprising CNFs, sorbitol and hydroxypropylated hemicellulose were tested for mechanical, optical and oxygen diffusion performance. The performance was linked to their structural evenness, which confirmed that the oxygen diffusion through the film is tremendously affected by the film nano hierarchy.


Subject(s)
Cellulose/chemistry , Ether/chemistry , Polysaccharides/chemistry , Quartz Crystal Microbalance Techniques
4.
Anal Bioanal Chem ; 409(20): 4811-4817, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28577073

ABSTRACT

Hydroxypropyl xylans with varying degrees of substitution were characterized by size-exclusion chromatography. Molar masses of the samples were determined using two approaches: by conventional calibration with molar mass standards and by a multi-detection method that utilizes the combination of static light scattering, viscometry, and differential refractive index detection. The molar mass results obtained by the multi-detection method were accurate, but required the determination of separate refractive index increments for each structurally different sample. The column calibration approach with standard pullulan samples gave biased results due to the differences in hydrodynamic volumes between pullulans and hydroxypropyl xylans with similar molar masses. The degree of hydroxypropylation affected the chain conformation and compactness of the polymer chains. Mark-Houwink parameters and persistence length values suggested that the hydroxypropyl substituents reduced the flexibility of the xylan chain and made the polymer chain more extended.

5.
Bioresour Technol ; 212: 236-244, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27107340

ABSTRACT

The progress of the conversion, the yield, the structure and the morphology of the produced carbonaceous materials as a function of time were systematically studied with pyrolysis-GC/FID and FESEM microscope. The conversion of galactoglucomannan, bleached kraft pulp and TEMPO oxidized cellulose nanofibrils followed the reaction route of glucose being slower though with fibrous material, higher molar mass and viscosity. The conversion of kraft lignin was minor following completely different reaction route. Carbonaceous particles of different shape and size were produced with yields between 23% and 73% after 4h with being higher for lignin than carbohydrates. According to the results, potential pulp mill streams represent lignocellulosic resources for generation of carbonaceous materials.


Subject(s)
Carbon/chemistry , Lignin/chemistry , Biomass , Carbohydrates , Microscopy, Electron, Scanning , Rivers/chemistry , Temperature , Waste Management/methods
6.
Biomacromolecules ; 17(5): 1894-901, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27086947

ABSTRACT

We present wetting, hygroscopicity, and interfacial activity of hemicellulose with respect to etherification and contrast it to their potential as interfacial modifiers, which is demonstrated by oil-in-water emulsification containing up to 60 vol% of the oil phase. Tunable amphiphilicity of hardwood and softwood hemicelluloses, xylans, and galactoglucomannans, respectively, was accomplished via controlled etherification. A series of degree of substitution (DS) of hydroxypropylated and 3-butoxy-2-hydroxypropylated ("butylated") grades was synthesized. The hemicellulose ethers were characterized by gel permeation chromatography, spectroscopic techniques, such as NMR, and contact angle measurements. An attenuated total reflectance infrared method was developed for fast identification of the DS. Near infrared analysis was utilized to explore the hygroscopicity of the material and to perform principle component analysis. The modification to butylated grades decreased the hygroscopicity, whereas the hydroxypropylated grades bound moisture. All of the hemicellulose ethers were water-soluble. The interfacial tension of the aqueous hemicellulose solutions was determined by pendant-drop tensiometer, and it was demonstrated to be dependent on the degree of modification.


Subject(s)
Polysaccharides/chemistry , Water/chemistry , Wood/chemistry , Xylans/chemistry , Chromatography, Gel , Surface Tension , Wettability
7.
Carbohydr Polym ; 136: 402-8, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26572370

ABSTRACT

Ionic liquid extraction of wood pulp has been highlighted as a highly potential new process for dissolving pulp production. Coproduction with a polymeric hemicellulose fraction was demonstrated in bench scale from softwood kraft pulp using extraction with the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIM OAc) and water. In total, the recovered pulp and hemicellulose fraction together yielded 95.5 wt.% of the pulp input. The extracted pulp had a remarkably high purity with an R18-value of 97.8%. The hemicellulose fraction consisted of galactoglucomannan, arabinoxylan and some cellulose and was precipitated from the ionic liquid-water mixture. After hydroxypropylation of the hemicellulose fraction, films were prepared and barrier and strength properties were compared to films from other polysaccharides. Reduced oxygen and water vapor permeation and good strength properties were demonstrated when compared to corresponding films from hydroxypropylated xylan from cold caustic extraction. The films have potential for applications in food packaging and edible films.

8.
Soft Matter ; 11(21): 4273-82, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25903294

ABSTRACT

Water interactions of ultra-thin films of wood-derived polysaccharides were investigated by using surface sensitive methods, Quartz Crystal Microbalance with Dissipation (QCM-D) and Atomic Force Microscopy (AFM). These approaches allow systematic molecular level detection and reveal information on the inherent behaviour of biobased materials with nanosensitivity. The influence of structural features of cellulose films i.e. crystallinity, surface roughness and porosity on water interactions was clarified. Cellulose films were prepared using spin-coating and Langmuir-Schaefer deposition to obtain thin films of equal thickness, identical cellulose origin, simultaneously with different supramolecular structures. The uptake/release of water molecules and swelling were characterized using QCM-D, and the structural features of the films were evaluated by AFM. More crystalline cellulose film possessed nanoporosity and as a consequence higher accessible surface area (more binding sites for water) and thus, it was capable of binding more water molecules in humid air and when immersed in water when compared to amorphous cellulose film. Due to the ordered structure, more crystalline cellulose film remained rigid and elastic although the water binding ability was more pronounced compared to amorphous film. The lower amount of bound water induced softening of the amorphous cellulose film and the elastic layer became viscoelastic at high humidity. Finally, cellulose thin films were modified by adsorbing a layer of 1-butyloxy-2-hydroxypropyl xylan, and the effect on moisture uptake was investigated. It was found that the supramolecular structure of the cellulose substrate has an effect not only on the adsorbed amount of xylan derivative but also on the water interactions of the material.


Subject(s)
Cellulose/chemistry , Water/chemistry , Microscopy, Atomic Force , Nanopores , Nanostructures/chemistry , Quartz Crystal Microbalance Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...