Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 56(23): 11285-92, 2008 Dec 10.
Article in English | MEDLINE | ID: mdl-18989974

ABSTRACT

The impact of processing on nonenzymatic antioxidant degradation and lipid oxidation leading to off-flavor development in potato flakes during storage was investigated. Lipoxygenase activity measurements in parallel with the analysis of lipid oxidation products (oxylipins) profiles using HPLC showed that the processing conditions used inhibited efficiently enzymatic lipid oxidation. However, nonenzymatic lipid oxidation products were found throughout processing and in fresh potato flakes. Furthermore, these autoxidative processes cannot be inactivated by the main endogenous nonenzymatic antioxidants in potato tubers (ascorbic acid, phenolic compounds and carotenoids), as these antioxidants are degraded during processing. Indeed, leaching and thermal treatments taking place during processing lead to a decrease of about 95%, 82% and 27% in the content of ascorbic acid, phenolic compounds and carotenoids, respectively. Therefore, storage is a critical step to prevent off-flavor development in potato flakes. Specific attention has thus to be paid on the use of efficient exogenous antioxidants as well as on storage conditions.


Subject(s)
Antioxidants/chemistry , Food Handling/methods , Oxylipins/chemistry , Solanum tuberosum/chemistry , Antioxidants/metabolism , Food-Processing Industry , Oxidation-Reduction , Oxylipins/metabolism , Solanum tuberosum/metabolism , Taste
2.
J Agric Food Chem ; 54(15): 5445-52, 2006 Jul 26.
Article in English | MEDLINE | ID: mdl-16848530

ABSTRACT

Off-flavors frequently appear during the storage of potato flakes. Volatile profile analysis performed by solid-phase microextraction-gas chromatography-mass spectrometry revealed that hexanal is the main compound that appears during the storage period. Hexanal may be a degradation product of linoleic acid formed through linoleic acid hydroperoxide cleavage. Profiles of hexanal precursors were determined from potato flakes at different storage time points. Linoleic acid-derived oxylipins are predominant in potato flakes. The free oxylipins identified, in descending order, are as follows: hexanal, hydroxy polyunsaturated fatty (PUFAs), oxo PUFAs, divinyl ether PUFAs, and hydroperoxy PUFAs. However, the main oxylipins detected were esterified: esterified hydroxy, hydroperoxy, and oxo PUFAs. Oxylipins reveal different evolutions during the storage period. Chiral high-performance liquid chromatography analysis of the precursors of hexanal and other oxylipins revealed a racemic composition that supports the nonenzymatic formation of hexanal and most of the other oxylipins identified.


Subject(s)
Aldehydes/analysis , Food Preservation , Plant Tubers/chemistry , Solanum tuberosum/chemistry , Taste , Chromatography, High Pressure Liquid , Fatty Acids/analysis , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...