Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Elife ; 122023 04 21.
Article in English | MEDLINE | ID: mdl-37083699

ABSTRACT

Excitation-contraction coupling requires a highly specialized membrane structure, the triad, composed of a plasma membrane invagination, the T-tubule, surrounded by two sarcoplasmic reticulum terminal cisternae. Although the precise mechanisms governing T-tubule biogenesis and triad formation remain largely unknown, studies have shown that caveolae participate in T-tubule formation and mutations of several of their constituents induce muscle weakness and myopathies. Here, we demonstrate that, at the plasma membrane, Bin1 and caveolae composed of caveolin-3 assemble into ring-like structures from which emerge tubes enriched in the dihydropyridine receptor. Bin1 expression lead to the formation of both rings and tubes and we show that Bin1 forms scaffolds on which caveolae accumulate to form the initial T-tubule. Cav3 deficiency caused by either gene silencing or pathogenic mutations results in defective ring formation and perturbed Bin1-mediated tubulation that may explain defective T-tubule organization in mature muscles. Our results uncover new pathophysiological mechanisms that may prove relevant to myopathies caused by Cav3 or Bin1 dysfunction.


Subject(s)
Adaptor Proteins, Signal Transducing , Caveolae , Adaptor Proteins, Signal Transducing/metabolism , Calcium Channels, L-Type/metabolism , Caveolae/metabolism , Cell Membrane/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Mice
2.
Neuropathol Appl Neurobiol ; 49(1): e12876, 2023 02.
Article in English | MEDLINE | ID: mdl-36575942

ABSTRACT

AIMS: Myotonic dystrophy type I (DM1) is one of the most frequent muscular dystrophies in adults. Although DM1 has long been considered mainly a muscle disorder, growing evidence suggests the involvement of peripheral nerves in the pathogenicity of DM1 raising the question of whether motoneurons (MNs) actively contribute to neuromuscular defects in DM1. METHODS: By using micropatterned 96-well plates as a coculture platform, we generated a functional neuromuscular model combining DM1 and muscleblind protein (MBNL) knock-out human-induced pluripotent stem cells-derived MNs and human healthy skeletal muscle cells. RESULTS: This approach led to the identification of presynaptic defects which affect the formation or stability of the neuromuscular junction at an early developmental stage. These neuropathological defects could be reproduced by the loss of RNA-binding MBNL proteins, whose loss of function in vivo is associated with muscular defects associated with DM1. These experiments indicate that the functional defects associated with MNs can be directly attributed to MBNL family proteins. Comparative transcriptomic analyses also revealed specific neuronal-related processes regulated by these proteins that are commonly misregulated in DM1. CONCLUSIONS: Beyond the application to DM1, our approach to generating a robust and reliable human neuromuscular system should facilitate disease modelling studies and drug screening assays.


Subject(s)
Induced Pluripotent Stem Cells , Myotonic Dystrophy , Adult , Humans , Myotonic Dystrophy/pathology , RNA-Binding Proteins/metabolism , Neuromuscular Junction/pathology , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/pathology
3.
Acta Neuropathol ; 144(6): 1157-1170, 2022 12.
Article in English | MEDLINE | ID: mdl-36197469

ABSTRACT

Oculopharyngeal muscular dystrophy (OPMD) is a rare muscle disease characterized by an onset of weakness in the pharyngeal and eyelid muscles. The disease is caused by the extension of a polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) protein leading to the formation of intranuclear inclusions or aggregates in the muscle of OPMD patients. Despite numerous studies stressing the deleterious role of nuclear inclusions in cellular and animal OPMD models, their exact contribution to human disease is still unclear. In this study, we used a large and unique collection of human muscle biopsy samples to perform an in-depth analysis of PABPN1 aggregates in relation to age, genotype and muscle status with the final aim to improve our understanding of OPMD physiopathology. Here we demonstrate that age and genotype influence PABPN1 aggregates: the percentage of myonuclei containing PABPN1 aggregates increases with age and the chaperone HSP70 co-localize more frequently with PABPN1 aggregates with a larger polyalanine tract. In addition to the previously described PRMT1 and HSP70 co-factors, we identified new components of PABPN1 aggregates including GRP78/BiP, RPL24 and p62. We also observed that myonuclei containing aggregates are larger than myonuclei without. When comparing two muscles from the same patient, a similar amount of aggregates is observed in different muscles, except for the pharyngeal muscle where fewer aggregates are observed. This could be due to the peculiar nature of this muscle which has a low level of PAPBN1 and contains regenerating fibers. To confirm the fate of PABPN1 aggregates in a regenerating muscle, we generated a xenograft model by transplanting human OPMD muscle biopsy samples into the hindlimb of an immunodeficient mouse. Xenografts from subjects with OPMD displayed regeneration of human myofibers and PABPN1 aggregates were rapidly present-although to a lower extent-after muscle fiber regeneration. Our data obtained on human OPMD samples add support to the dual non-exclusive models in OPMD combining toxic PABPN1 intranuclear inclusions together with PABPN1 loss of function which altogether result in this late-onset and muscle selective disease.


Subject(s)
Muscular Dystrophy, Oculopharyngeal , Humans , Mice , Animals , Muscular Dystrophy, Oculopharyngeal/genetics , Muscular Dystrophy, Oculopharyngeal/pathology , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , Heterografts , Disease Models, Animal , Molecular Chaperones/metabolism , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism
5.
J Cachexia Sarcopenia Muscle ; 13(2): 1385-1402, 2022 04.
Article in English | MEDLINE | ID: mdl-35194965

ABSTRACT

BACKGROUND: The cause of the motor neuron (MN) death that drives terminal pathology in amyotrophic lateral sclerosis (ALS) remains unknown, and it is thought that the cellular environment of the MN may play a key role in MN survival. Several lines of evidence implicate vesicles in ALS, including that extracellular vesicles may carry toxic elements from astrocytes towards MNs, and that pathological proteins have been identified in circulating extracellular vesicles of sporadic ALS patients. Because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle-secretory tissue, we hypothesized that muscle vesicles may be involved in ALS pathology. METHODS: Sporadic ALS patients were confirmed to be ALS according to El Escorial criteria and were genotyped to test for classic gene mutations associated with ALS, and physical function was assessed using the ALSFRS-R score. Muscle biopsies of either mildly affected deltoids of ALS patients (n = 27) or deltoids of aged-matched healthy subjects (n = 30) were used for extraction of muscle stem cells, to perform immunohistology, or for electron microscopy. Muscle stem cells were characterized by immunostaining, RT-qPCR, and transcriptomic analysis. Secreted muscle vesicles were characterized by proteomic analysis, Western blot, NanoSight, and electron microscopy. The effects of muscle vesicles isolated from the culture medium of ALS and healthy myotubes were tested on healthy human-derived iPSC MNs and on healthy human myotubes, with untreated cells used as controls. RESULTS: An accumulation of multivesicular bodies was observed in muscle biopsies of sporadic ALS patients by immunostaining and electron microscopy. Study of muscle biopsies and biopsy-derived denervation-naïve differentiated muscle stem cells (myotubes) revealed a consistent disease signature in ALS myotubes, including intracellular accumulation of exosome-like vesicles and disruption of RNA-processing. Compared with vesicles from healthy control myotubes, when administered to healthy MNs the vesicles of ALS myotubes induced shortened, less branched neurites, cell death, and disrupted localization of RNA and RNA-processing proteins. The RNA-processing protein FUS and a majority of its binding partners were present in ALS muscle vesicles, and toxicity was dependent on the expression level of FUS in recipient cells. Toxicity to recipient MNs was abolished by anti-CD63 immuno-blocking of vesicle uptake. CONCLUSIONS: ALS muscle vesicles are shown to be toxic to MNs, which establishes the skeletal muscle as a potential source of vesicle-mediated toxicity in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Aged , Amyotrophic Lateral Sclerosis/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Motor Neurons/metabolism , Muscle Cells/metabolism , Proteomics
6.
Dis Model Mech ; 13(11)2020 11 24.
Article in English | MEDLINE | ID: mdl-32994313

ABSTRACT

Skeletal muscle development and regeneration are tightly regulated processes. How the intracellular organization of muscle fibers is achieved during these steps is unclear. Here, we focus on the cellular and physiological roles of amphiphysin 2 (BIN1), a membrane remodeling protein mutated in both congenital and adult centronuclear myopathies (CNM), that is ubiquitously expressed and has skeletal muscle-specific isoforms. We created and characterized constitutive muscle-specific and inducible Bin1 homozygous and heterozygous knockout mice targeting either ubiquitous or muscle-specific isoforms. Constitutive Bin1-deficient mice died at birth from lack of feeding due to a skeletal muscle defect. T-tubules and other organelles were misplaced and altered, supporting a general early role for BIN1 in intracellular organization, in addition to membrane remodeling. Although restricted deletion of Bin1 in unchallenged adult muscles had no impact, the forced switch from the muscle-specific isoforms to the ubiquitous isoforms through deletion of the in-frame muscle-specific exon delayed muscle regeneration. Thus, ubiquitous BIN1 function is necessary for muscle development and function, whereas its muscle-specific isoforms fine tune muscle regeneration in adulthood, supporting that BIN1 CNM with congenital onset are due to developmental defects, whereas later onset may be due to regeneration defects.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Muscle Development/physiology , Muscle, Skeletal/physiology , Nerve Tissue Proteins/metabolism , Regeneration/physiology , Tumor Suppressor Proteins/metabolism , Animals , Animals, Newborn , Exons/genetics , Feeding Behavior , Homozygote , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/ultrastructure , Organ Specificity , Protein Isoforms/metabolism , Sequence Deletion , Survival Analysis
7.
J Cell Biol ; 219(9)2020 09 07.
Article in English | MEDLINE | ID: mdl-32642759

ABSTRACT

Clathrin function directly derives from its coat structure, and while endocytosis is mediated by clathrin-coated pits, large plaques contribute to cell adhesion. Here, we show that the alternative splicing of a single exon of the clathrin heavy chain gene (CLTC exon 31) helps determine the clathrin coat organization. Direct genetic control was demonstrated by forced CLTC exon 31 skipping in muscle cells that reverses the plasma membrane content from clathrin plaques to pits and by promoting exon inclusion that stimulated flat plaque assembly. Interestingly, mis-splicing of CLTC exon 31 found in the severe congenital form of myotonic dystrophy was associated with reduced plaques in patient myotubes. Moreover, forced exclusion of this exon in WT mice muscle induced structural disorganization and reduced force, highlighting the contribution of this splicing event for the maintenance of tissue homeostasis. This genetic control on clathrin assembly should influence the way we consider how plasticity in clathrin-coated structures is involved in muscle development and maintenance.


Subject(s)
Alternative Splicing/physiology , Clathrin Heavy Chains/metabolism , Clathrin/metabolism , Coated Pits, Cell-Membrane/metabolism , Adult , Animals , Cell Membrane/metabolism , Child , Endocytosis/physiology , Exons/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Young Adult
8.
Skelet Muscle ; 10(1): 20, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641118

ABSTRACT

Skeletal muscle is increasingly considered an endocrine organ secreting myokines and extracellular vesicles (exosomes and microvesicles), which can affect physiological changes with an impact on different pathological conditions, including regenerative processes, aging, and myopathies. Primary human myoblasts are an essential tool to study the muscle vesicle secretome. Since their differentiation in conditioned media does not induce any signs of cell death or cell stress, artefactual effects from those processes are unlikely. However, adult human primary myoblasts senesce in long-term tissue culture, so a major technical challenge is posed by the need to avoid artefactual effects resulting from pre-senescent changes. Since these cells should be studied within a strictly controlled pre-senescent division count (<21 divisions), and yields of myoblasts per muscle biopsy are low, it is difficult or impossible to amplify sufficiently large cell numbers (some 250 × 106 myoblasts) to obtain sufficient conditioned medium for the standard ultracentrifugation approach to exosome isolation.Thus, an optimized strategy to extract and study secretory muscle vesicles is needed. In this study, conditions are optimized for the in vitro cultivation of human myoblasts, and the quality and yield of exosomes extracted using an ultracentrifugation protocol are compared with a modified polymer-based precipitation strategy combined with extra washing steps. Both vesicle extraction methods successfully enriched exosomes, as vesicles were positive for CD63, CD82, CD81, floated at identical density (1.15-1.27 g.ml-1), and exhibited similar size and cup-shape using electron microscopy and NanoSight tracking. However, the modified polymer-based precipitation was a more efficient strategy to extract exosomes, allowing their extraction in sufficient quantities to explore their content or to isolate a specific subpopulation, while requiring >30 times fewer differentiated myoblasts than what is required for the ultracentrifugation method. In addition, exosomes could still be integrated into recipient cells such as human myotubes or iPSC-derived motor neurons.Modified polymer-based precipitation combined with extra washing steps optimizes exosome yield from a lower number of differentiated myoblasts and less conditioned medium, avoiding senescence and allowing the execution of multiple experiments without exhausting the proliferative capacity of the myoblasts.


Subject(s)
Cell Fractionation/methods , Exosomes/metabolism , Myoblasts/metabolism , Primary Cell Culture/methods , Cells, Cultured , Humans
9.
Acta Neuropathol Commun ; 8(1): 89, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32580751

ABSTRACT

Enlarged early endosomes have been visualized in Alzheimer's disease (AD) and Down syndrome (DS) using conventional confocal microscopy at a resolution corresponding to endosomal size (hundreds of nm). In order to overtake the diffraction limit, we used super-resolution structured illumination microscopy (SR-SIM) and transmission electron microscopies (TEM) to analyze the early endosomal compartment in DS.By immunofluorescence and confocal microscopy, we confirmed that the volume of Early Endosome Antigen 1 (EEA1)-positive puncta was 13-19% larger in fibroblasts and iPSC-derived neurons from individuals with DS, and in basal forebrain cholinergic neurons (BFCN) of the Ts65Dn mice modelling DS. However, EEA1-positive structures imaged by TEM or SR-SIM after chemical fixation had a normal size but appeared clustered. In order to disentangle these discrepancies, we imaged optimally preserved High Pressure Freezing (HPF)-vitrified DS fibroblasts by TEM and found that early endosomes were 75% denser but remained normal-sized.RNA sequencing of DS and euploid fibroblasts revealed a subgroup of differentially-expressed genes related to cargo sorting at multivesicular bodies (MVBs). We thus studied the dynamics of endocytosis, recycling and MVB-dependent degradation in DS fibroblasts. We found no change in endocytosis, increased recycling and delayed degradation, suggesting a "traffic jam" in the endosomal compartment.Finally, we show that the phosphoinositide PI (3) P, involved in early endosome fusion, is decreased in DS fibroblasts, unveiling a new mechanism for endosomal dysfunctions in DS and a target for pharmacotherapy.


Subject(s)
Down Syndrome/pathology , Endosomes/metabolism , Endosomes/ultrastructure , Fibroblasts/ultrastructure , Animals , Down Syndrome/metabolism , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells , Mice , Microscopy, Confocal , Microscopy, Electron, Transmission , Tissue Fixation , Vitrification
10.
Elife ; 82019 11 11.
Article in English | MEDLINE | ID: mdl-31710288

ABSTRACT

Targeted differentiation of pluripotent stem (PS) cells into myotubes enables in vitro disease modeling of skeletal muscle diseases. Although various protocols achieve myogenic differentiation in vitro, resulting myotubes typically display an embryonic identity. This is a major hurdle for accurately recapitulating disease phenotypes in vitro, as disease commonly manifests at later stages of development. To address this problem, we identified four factors from a small molecule screen whose combinatorial treatment resulted in myotubes with enhanced maturation, as shown by the expression profile of myosin heavy chain isoforms, as well as the upregulation of genes related with muscle contractile function. These molecular changes were confirmed by global chromatin accessibility and transcriptome studies. Importantly, we also observed this maturation in three-dimensional muscle constructs, which displayed improved in vitro contractile force generation in response to electrical stimulus. Thus, we established a model for in vitro muscle maturation from PS cells.


Subject(s)
Cell Differentiation/drug effects , Intercellular Signaling Peptides and Proteins/isolation & purification , Muscle Fibers, Skeletal/metabolism , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/physiology , Cells, Cultured , Drug Evaluation, Preclinical , Humans , Intercellular Signaling Peptides and Proteins/pharmacology
11.
Sci Rep ; 9(1): 1580, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733559

ABSTRACT

Dynamin 2 (DNM2) is a key protein of the endocytosis and intracellular membrane trafficking machinery. Mutations in the DNM2 gene cause autosomal dominant centronuclear myopathy (CNM) and a knock-in mouse model expressing the most frequent human DNM2 mutation in CNM (Knock In-Dnm2R465W/+) develops a myopathy sharing similarities with human disease. Using isolated muscle fibres from Knock In-Dnm2R465W/+ mice, we investigated number, spatial distribution and morphology of myonuclei. We showed a reduction of nuclear number from 20 weeks of age in Tibialis anterior muscle from heterozygous mice. This reduction is associated with a decrease in the satellite cell content in heterozygous muscles. The concomitant reduction of myonuclei number and cross-section area in the heterozygous fibres contributes to largely maintain myonuclear density and volume of myonuclear domain. Moreover, we identified signs of impaired spatial nuclear distribution including alteration of distance from myonuclei to their nearest neighbours and change in orientation of the nuclei. This study highlights reduction of number of myonuclei, a key regulator of the myofiber size, as a new pathomechanism underlying muscle atrophy in the dominant centronuclear myopathy. In addition, this study opens a new line of investigation which could prove particularly important on satellite cells in dominant centronuclear myopathy.


Subject(s)
Dynamin II/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myopathies, Structural, Congenital/etiology , Myopathies, Structural, Congenital/metabolism , Animals , Cell Nucleus , Disease Models, Animal , Dynamin II/genetics , Mice , Mice, Knockout , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/ultrastructure , Myopathies, Structural, Congenital/pathology , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism
12.
Hum Mol Genet ; 28(10): 1694-1708, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30649389

ABSTRACT

Oculopharyngeal muscular dystrophy (OPMD) is a rare late onset genetic disease leading to ptosis, dysphagia and proximal limb muscles at later stages. A short abnormal (GCN) triplet expansion in the polyA-binding protein nuclear 1 (PABPN1) gene leads to PABPN1-containing aggregates in the muscles of OPMD patients. Here we demonstrate that treating mice with guanabenz acetate (GA), an FDA-approved antihypertensive drug, reduces the size and number of nuclear aggregates, improves muscle force, protects myofibers from the pathology-derived turnover and decreases fibrosis. GA targets various cell processes, including the unfolded protein response (UPR), which acts to attenuate endoplasmic reticulum (ER) stress. We demonstrate that GA increases both the phosphorylation of the eukaryotic translation initiation factor 2α subunit and the splicing of Xbp1, key components of the UPR. Altogether these data show that modulation of protein folding regulation is beneficial for OPMD and promote the further development of GA or its derivatives for treatment of OPMD in humans. Furthermore, they support the recent evidences that treating ER stress could be therapeutically relevant in other more common proteinopathies.


Subject(s)
Guanabenz/pharmacology , Muscular Dystrophy, Oculopharyngeal/drug therapy , Poly(A)-Binding Protein I/genetics , X-Box Binding Protein 1/genetics , Alternative Splicing/drug effects , Alternative Splicing/genetics , Animals , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Fibrosis/drug therapy , Fibrosis/genetics , Fibrosis/pathology , Humans , Mice , Muscular Dystrophy, Oculopharyngeal/genetics , Muscular Dystrophy, Oculopharyngeal/pathology , Phosphorylation/drug effects , Protein Aggregates/drug effects , Protein Aggregates/genetics , Protein Folding , Unfolded Protein Response/drug effects
13.
Mol Biol Cell ; 30(5): 579-590, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30601711

ABSTRACT

Clathrin plaques are stable features of the plasma membrane observed in several cell types. They are abundant in muscle, where they localize at costameres that link the contractile apparatus to the sarcolemma and connect the sarcolemma to the basal lamina. Here, we show that clathrin plaques and surrounding branched actin filaments form microdomains that anchor a three-dimensional desmin intermediate filament (IF) web. Depletion of clathrin plaque and branched actin components causes accumulation of desmin tangles in the cytoplasm. We show that dynamin 2, whose mutations cause centronuclear myopathy (CNM), regulates both clathrin plaques and surrounding branched actin filaments, while CNM-causing mutations lead to desmin disorganization in a CNM mouse model and patient biopsies. Our results suggest a novel paradigm in cell biology, wherein clathrin plaques act as platforms capable of recruiting branched cortical actin, which in turn anchors IFs, both essential for striated muscle formation and function.


Subject(s)
Actins/metabolism , Clathrin/metabolism , Muscle, Skeletal/metabolism , Animals , Desmin/metabolism , Dynamin II/metabolism , Humans , Intermediate Filaments/metabolism , Intermediate Filaments/ultrastructure , Mice, Knockout , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Mutation/genetics , Myopathies, Structural, Congenital/genetics , Wiskott-Aldrich Syndrome Protein/metabolism
14.
Cell Death Dis ; 9(5): 551, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29748534

ABSTRACT

Idiopathic Inflammatory Myopathies (IIMs) are a heterogeneous group of autoimmune diseases affecting skeletal muscle tissue homeostasis. They are characterized by muscle weakness and inflammatory infiltration with tissue damage. Amongst the cells in the muscle inflammatory infiltration, dendritic cells (DCs) are potent antigen-presenting and key components in autoimmunity exhibiting an increased activation in inflamed tissues. Since, the IIMs are characterized by the focal necrosis/regeneration and muscle atrophy, we hypothesized that DCs may play a role in these processes. Due to the absence of a reliable in vivo model for IIMs, we first performed co-culture experiments with immature DCs (iDC) or LPS-activated DCs (actDC) and proliferating myoblasts or differentiating myotubes. We demonstrated that both iDC or actDCs tightly interact with myoblasts and myotubes, increased myoblast proliferation and migration, but inhibited myotube differentiation. We also observed that actDCs increased HLA-ABC, HLA-DR, VLA-5, and VLA-6 expression and induced cytokine secretion on myoblasts. In an in vivo regeneration model, the co-injection of human myoblasts and DCs enhanced human myoblast migration, whereas the absolute number of human myofibres was unchanged. In conclusion, we suggest that in the early stages of myositis, DCs may play a crucial role in inducing muscle-damage through cell-cell contact and inflammatory cytokine secretion, leading to muscle regeneration impairment.


Subject(s)
Cell Differentiation , Cell Proliferation , Dendritic Cells/metabolism , Myoblasts, Skeletal/metabolism , Adult , Antigens, Differentiation/biosynthesis , Dendritic Cells/cytology , Female , Humans , Infant, Newborn , Lipopolysaccharides/pharmacology , Male , Middle Aged , Myoblasts, Skeletal/cytology
15.
Skelet Muscle ; 8(1): 1, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29304851

ABSTRACT

BACKGROUND: Human induced pluripotent stem cells-derived myogenic progenitors develop functional and ultrastructural features typical of skeletal muscle when differentiated in culture. Besides disease-modeling, such a system can be used to clarify basic aspects of human skeletal muscle development. In the present study, we focus on the development of the excitation-contraction (E-C) coupling, a process that is essential both in muscle physiology and as a tool to differentiate between the skeletal and cardiac muscle. The occurrence and maturation of E-C coupling structures (Sarcoplasmic Reticulum-Transverse Tubule (SR-TT) junctions), key molecular components, and Ca2+ signaling were examined, along with myofibrillogenesis. METHODS: Pax7+-myogenic progenitors were differentiated in culture, and developmental changes were examined from a few days up to several weeks. Ion channels directly involved in the skeletal muscle E-C coupling (RyR1 and Cav1.1 voltage-gated Ca2+ channels) were labeled using indirect immunofluorescence. Ultrastructural changes of differentiating cells were visualized by transmission electron microscopy. On the functional side, depolarization-induced intracellular Ca2+ transients mediating E-C coupling were recorded using Fura-2 ratiometric Ca2+ imaging, and myocyte contraction was captured by digital photomicrography. RESULTS: We show that the E-C coupling machinery occurs and operates within a few days post-differentiation, as soon as the myofilaments align. However, Ca2+ transients become effective in triggering myocyte contraction after 1 week of differentiation, when nascent myofibrils show alternate A-I bands. At later stages, myofibrils become fully organized into adult-like sarcomeres but SR-TT junctions do not reach their triadic structure and typical A-I location. This is mirrored by the absence of cross-striated distribution pattern of both RyR1 and Cav1.1 channels. CONCLUSIONS: The E-C coupling machinery occurs and operates within the first week of muscle cells differentiation. However, while early development of SR-TT junctions is coordinated with that of nascent myofibrils, their respective maturation is not. Formation of typical triads requires other factors/conditions, and this should be taken into account when using in-vitro models to explore skeletal muscle diseases, especially those affecting E-C coupling.


Subject(s)
Excitation Contraction Coupling/physiology , Induced Pluripotent Stem Cells/cytology , Muscle Development/physiology , Muscle Fibers, Skeletal/cytology , Myofibrils/ultrastructure , Calcium Signaling/physiology , Caveolin 1/metabolism , Cell Differentiation/physiology , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/ultrastructure , Microscopy, Electron , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Muscle Fibers, Skeletal/ultrastructure , Myofibrils/metabolism , Myofibrils/physiology , Ryanodine Receptor Calcium Release Channel/metabolism
16.
Skelet Muscle ; 6: 23, 2016.
Article in English | MEDLINE | ID: mdl-27441081

ABSTRACT

BACKGROUND: The greater susceptibility to contraction-induced skeletal muscle injury (fragility) is an important dystrophic feature and tool for testing preclinic dystrophin-based therapies for Duchenne muscular dystrophy. However, how these therapies reduce the muscle fragility is not clear. METHODS: To address this question, we first determined the event(s) of the excitation-contraction cycle which is/are altered following lengthening (eccentric) contractions in the mdx muscle. RESULTS: We found that the immediate force drop following lengthening contractions, a widely used measure of muscle fragility, was associated with reduced muscle excitability. Moreover, the force drop can be mimicked by an experimental reduction in muscle excitation of uninjured muscle. Furthermore, the force drop was not related to major neuromuscular transmission failure, excitation-contraction uncoupling, and myofibrillar impairment. Secondly, and importantly, the re-expression of functional truncated dystrophin in the muscle of mdx mice using an exon skipping strategy partially prevented the reductions in both force drop and muscle excitability following lengthening contractions. CONCLUSION: We demonstrated for the first time that (i) the increased susceptibility to contraction-induced muscle injury in mdx mice is mainly attributable to reduced muscle excitability; (ii) dystrophin-based therapy improves fragility of the dystrophic skeletal muscle by preventing reduction in muscle excitability.


Subject(s)
Dystrophin/metabolism , Excitation Contraction Coupling , Genetic Therapy , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/therapy , RNA, Small Nuclear/genetics , Action Potentials , Animals , Dependovirus/genetics , Disease Models, Animal , Dystrophin/genetics , Genetic Predisposition to Disease , Genetic Vectors , Mice, Inbred mdx , Muscle Strength , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Phenotype , RNA, Small Nuclear/metabolism , Time Factors , Up-Regulation
17.
Hum Mol Genet ; 24(23): 6624-39, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26362255

ABSTRACT

Collagen VI (COLVI), a protein ubiquitously expressed in connective tissues, is crucial for structural integrity, cellular adhesion, migration and survival. Six different genes are recognized in mammalians, encoding six COLVI-chains that assemble as two 'short' (α1, α2) and one 'long' chain (theoretically any one of α3-6). In humans, defects in the most widely expressed heterotrimer (α123), due to mutations in the COL6A1-3 genes, cause a heterogeneous group of neuromuscular disorders, collectively termed COLVI-related muscle disorders. Little is known about the function(s) of the recently described α4-6 chains and no mutations have been detected yet. In this study, we characterized two novel COLVI long chains in zebrafish that are most homologous to the mammalian α4 chain; therefore, we named the corresponding genes col6a4a and col6a4b. These orthologues represent ancestors of the mammalian Col6a4-6 genes. By in situ hybridization and RT-qPCR, we unveiled a distinctive expression kinetics for col6a4b, compared with the other col6a genes. Using morpholino antisense oligonucleotides targeting col6a4a, col6a4b and col6a2, we modelled partial and complete COLVI deficiency, respectively. All morphant embryos presented altered muscle structure and impaired motility. While apoptosis was not drastically increased, autophagy induction was defective in all morphants. Furthermore, motoneuron axon growth was abnormal in these morphants. Importantly, some phenotypical differences emerged between col6a4a and col6a4b morphants, suggesting only partial functional redundancy. Overall, our results further confirm the importance of COLVI in zebrafish muscle development and may provide important clues for potential human phenotypes associated with deficiency of the recently described COLVI-chains.


Subject(s)
Collagen Type VI/metabolism , Muscle Development , Zebrafish Proteins/metabolism , Zebrafish/genetics , Amino Acid Sequence , Animals , Collagen Type VI/genetics , Gene Expression , Molecular Sequence Data , Phylogeny , Sequence Alignment , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/genetics
18.
Nat Commun ; 6: 7205, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26018658

ABSTRACT

Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.


Subject(s)
Dystrophin/genetics , Gene Expression Regulation, Developmental , Membrane Proteins/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/genetics , Myotonic Dystrophy/genetics , RNA Splicing/genetics , RNA-Binding Proteins/genetics , Zebrafish Proteins/genetics , Animals , Chromatography, Liquid , Dystrophin/metabolism , Exons , Homeostasis , Humans , Immunohistochemistry , Immunoprecipitation , Membrane Proteins/metabolism , Mice , Microscopy, Electron , Muscle Fibers, Skeletal/ultrastructure , Muscle Proteins/metabolism , Myotonic Dystrophy/pathology , Real-Time Polymerase Chain Reaction , Sarcoplasmic Reticulum/ultrastructure , Tandem Mass Spectrometry , Zebrafish Proteins/metabolism
19.
Mol Neurodegener ; 9: 60, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25524049

ABSTRACT

BACKGROUND: It is suspected that excess of brain cholesterol plays a role in Alzheimer's disease (AD). Membrane-associated cholesterol was shown to be increased in the brain of individuals with sporadic AD and to correlate with the severity of the disease. We hypothesized that an increase of membrane cholesterol could trigger sporadic AD early phenotypes. RESULTS: We thus acutely loaded the plasma membrane of cultured neurons with cholesterol to reach the 30% increase observed in AD brains. We found changes in gene expression profiles that are reminiscent of early AD stages. We also observed early AD cellular phenotypes. Indeed we found enlarged and aggregated early endosomes using confocal and electron microscopy after immunocytochemistry. In addition amyloid precursor protein vesicular transport was inhibited in neuronal processes, as seen by live-imaging. Finally transient membrane cholesterol loading lead to significantly increased amyloid-ß42 secretion. CONCLUSIONS: Membrane cholesterol increase in cultured neurons reproduces most early AD changes and could thus be a relevant model for deciphering AD mechanisms and identifying new therapeutic targets.


Subject(s)
Alzheimer Disease/metabolism , Cell Membrane/metabolism , Cholesterol/metabolism , Neurons/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Memory/physiology , Phenotype , Rats, Sprague-Dawley , Transcriptome
20.
Orphanet J Rare Dis ; 9: 174, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25425325

ABSTRACT

BACKGROUND: Dystonia, cerebellar atrophy, and cardiomyopathy constitute a rare association. METHODS: We used homozygosity mapping and whole exome sequencing to determine the mutation, western blot and immunolabelling on cultured fibroblasts to demonstrate the lower expression and the mislocalization of the protein. RESULTS: We report on a boy born from consanguineous healthy parents, who presented at three years of age with rapidly progressing dystonia, progressive cerebellar atrophy, and dilated cardiomyopathy. We identified regions of homozygosity and performed whole exome sequencing that revealed a homozygous missense mutation in TOR1AIP1. The mutation, absent in controls, results in a change of a highly conserved glutamic acid to alanine. TOR1AIP1 encodes lamina-associated polypeptide 1 (LAP1), a transmembrane protein ubiquitously expressed in the inner nuclear membrane. LAP1 interacts with torsinA, the protein mutated in DYT1-dystonia. In vitro studies in fibroblasts of the patient revealed reduced expression of LAP1 and its mislocalization and aggregation in the endoplasmic reticulum as underlying pathogenic mechanisms. CONCLUSIONS AND RELEVANCE: The pathogenic role of TOR1AIP1 mutation is supported by a) the involvement of a highly conserved amino acid, b) the absence of the mutation in controls, c) the functional interaction of LAP1 with torsinA, and d) mislocalization of LAP1 in patient cells. Of note, cardiomyopathy has been reported in LAP1-null mice and in patients with the TOR1AIP1 nonsense mutation. Other cases will help delineate the clinical spectrum of LAP1-related mutations.


Subject(s)
Cardiomyopathies/genetics , Cerebellar Diseases/genetics , Dystonia/genetics , Fibroblasts/metabolism , HSC70 Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Mutation, Missense , Blotting, Western , Cardiomyopathies/etiology , Cell Culture Techniques , Cerebellar Diseases/etiology , Child, Preschool , Dystonia/etiology , Exome , HSC70 Heat-Shock Proteins/metabolism , Humans , Immunohistochemistry , Male , Molecular Chaperones/metabolism , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...