Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38131923

ABSTRACT

This work is devoted to the description of the synthesis of hydrogels in the process of cryotropic gel formation based on copolymerization of synthesized potassium 3-sulfopropyl methacrylate and 2-hydroxyethyl methacrylate (SPMA-co-HEMA) and assessing the potential possibility of their use as substrates for growing plants in intensive light culture in a greenhouse. Gel substrates based on the SPMA-co-HEMA were created in two compositions, differing from each other in the presence of macro- and microelements, and their effects were studied on the plants' physiological state (content of chlorophylls a and b, activity of catalase and peroxidase enzymes, intensity of lipid peroxidation, elemental compositions) at the vegetative period of their development and on the plants' growth, productivity and quality of plant production at the final stages of development. Experiments were carried out under controlled microclimate conditions. Modern and standard generally accepted methods of gels were employed (ATR-FTIR and 13C NMR spectral studies, scanning electron microscopy, measurement of specific surface area and pore volume), as well as the methods of the physiological and chemical analysis of plants. The study demonstrated the swelling ability of the created gel substrates. Hydrogels' structure, their specific surface area, porosity, and pore volume were investigated. Using the example of representatives of leaf, fruit and root vegetable crops, the high biological activity of gel substrates was revealed throughout the vegetation period. Species specificity in the reaction of plants to the presence of gel substrates in the root-inhabited environment was revealed. Lettuce, tomato and cucumber plants were more responsive to the effect of the gel substrate, and radish plants were less responsive. At the same time, more pronounced positive changes in plant growth, quality and productivity were observed in cucumber and lettuce in the variant of gel substrates with macro- and microelements and in tomato plants in both variants of gel substrates. Further research into the mechanisms of the influence of gel substrates on plants, as well as the synthesis of new gel substrates with more pronounced properties to sorb and retain moisture is promising.

2.
Soft Matter ; 19(22): 4144-4154, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37249322

ABSTRACT

Conducting polymer polyelectrolyte microspheres are typically composed of a cationic conducting polymer and an anionic polymer. The polymer chains inside these microspheres are physically or chemically cross-linked, creating a network that enables high water retention. Poly(3,4-ethylenedioxythiophene) (PEDOT) being an electrically conductive polymer exhibits a high conductivity and has great biotechnological applications. The unique combination of properties of PEDOT containing polyelectrolyte microspheres makes them widely investigated materials for electroresponsive cells, tissue engineering, and bio-sensors. The demand to produce PEDOT with varied properties depending the specific application requires the understanding of the basic principles of template formation. In the present work, we studied the inverse suspension polymerization of p-styrenesulfonic acid in the presence of a cross-linking agent as a synthetic way for the formation of porous polyelectrolyte microspheres. We traced how the nature of the emulsifier affected both the structure of the surface layer of the microspheres and the degree of their cross-linking. The porous structure of polyelectrolyte microspheres obtained is found to promote the polymerization of EDOT in their presence throughout the entire microsphere volume. The structural characteristics of the polyelectrolyte/PEDOT complexes in relation to their electrochemical properties have been studied.

3.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769272

ABSTRACT

Polymeric hydrogels based on sulfo-containing comonomers are promising materials for biotechnological application, namely, for use as a system for delivering water and minerals during seed germination in conditions of an unstable moisture zone. In this work, cryogels based on 3-sulfopropyl methacrylate and 2-hydroxyethyl methacrylate copolymers were obtained by the cryotropic gelation method. The morphology, specific surface area, and swelling behaviors of cryogels are found to depend on the total concentration of monomers in the reaction system and the content of the gel fraction in cryogels. Cryogels formed in the presence of nanodiamonds are shown to exhibit high biological activity during the germination of Lepidium sativum L. variety Ajur seeds, which manifests itself by stimulating seed germination and a significant increase in the raw weight of sprouts. These results indicate that sulfonic cryogels have a high potential to improve seed germination and plant growth, proving that such cryogels can be used as environmentally friendly materials for agricultural applications.


Subject(s)
Biotechnology , Cryogels , Polymers , Water
4.
Molecules ; 27(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36364406

ABSTRACT

Conductive hydrogels are polymeric materials that are promising for bioelectronic applications. In the present study, a complex based on sulfonic cryogels and poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated as an example of a conductive hydrogel. Preparation of polyacrylate cryogels of various morphologies was carried out by cryotropic gelation of 3-sulfopropyl methacrylate and sulfobetaine methacrylate in the presence of functional comonomers (2-hydroxyethyl methacrylate and vinyl acetate). Polymerization of 3,4-ethylenedioxythiophene in the presence of several of the above cryogels occurred throughout the entire volume of each polyelectrolyte cryogel because of its porous structure. Structural features of cryogel@PEDOT complexes in relation to their electrochemical properties were investigated. It was shown that poly(3,4-ethylenedioxythiophene) of a linear conformation was formed in the presence of a cryogel based on sulfobetaine methacrylate, while minimum values of charge-transfer resistance were observed in those complexes, and electrochemical properties of the complexes did not depend on diffusion processes.


Subject(s)
Cryogels , Methacrylates , Cryogels/chemistry , Polymerization , Polyelectrolytes , Methacrylates/chemistry
5.
Sensors (Basel) ; 22(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35408397

ABSTRACT

The main task of the research is to acquire fundamental knowledge about the effect of polymer structure on the physicochemical properties of films. A novel meta-material that can be used in manufacturing sensor layers was developed as a model. At the first stage, poly(sodium 4-styrenesulfonate) (PNaSS) cross-linked microspheres are synthesized (which are based on strong polyelectrolytes containing sulfo groups in each monomer unit), and at the second stage, PNaSS@PEDOT microspheres are formed. The poly(3,4-ethylenedioxythiophene) (PEDOT) shell was obtained by the acid-assisted self-polymerization of the monomer; this process is biologically safe and thus suitable for biomedical applications. The suitability of electrochemical impedance spectroscopy for E. coli detection was tested; it was revealed that the attached bacterial wall was destroyed upon application of constant oxidation potential (higher than 0.5 V), which makes the PNaSS@PEDOT microsphere particles promising materials for the development of antifouling coatings. Furthermore, under open-circuit conditions, the walls of E. coli bacteria were not destroyed, which opens up the possibility of employing such meta-materials as sensor films. Scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle, and wide-angle X-ray diffraction methods were applied in order to characterize the PNaSS@PEDOT films.


Subject(s)
Escherichia coli , Polymers , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Microspheres , Polymers/chemistry
6.
Soft Matter ; 17(8): 2290-2301, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33475667

ABSTRACT

Polyelectrolyte microspheres find applications in many fields such as ion exchange columns, fuel cell membranes, and catalysis, to name a few. Synthesis of these microspheres by inverse emulsion polymerization offers various advantages due to the increased specific surface area and high surface charge density. The surface charge density of the obtained polyelectrolyte microspheres is a hundred times higher than that of either particles obtained by dispersion copolymerization of styrene and styrenesulfonic acid or sulfonated microspheres. The morphology, chemical structure, and electro-surface properties of the synthesized microspheres were studied by transmission and scanning electron microscopy, FTIR-spectroscopy, and conductometric and potentiometric titrations, respectively. Using the potentiometric titration it is possible to characterize the structure of the surface layer of polyelectrolyte microspheres as entirely as possible. The study of the ion-exchange capacity of polyelectrolyte microspheres shows that ion-exchange capacity is 2.1 meq g-1 in this case, which is more than 2 times higher than that of sulfonated microspheres, and 20 times higher than that of particles obtained by dispersion copolymerization.

SELECTION OF CITATIONS
SEARCH DETAIL
...