Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Rev Med Pharmacol Sci ; 18(11): 1638-46, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24943975

ABSTRACT

OBJECTIVE: Besides than in the control of developmental events, axonal adhesive glycoproteins may be also involved in functions requiring fine organization and connectivity of the nervous tissue. We previously demonstrated morphological alterations and functional cerebellar deficits in transgenic mice (TAG/F3 mice) ectopically expressing the F3/Contactin axonal glycoprotein under the control of a selected regulatory region from the Transient Axonal Glycoprotein (TAG-1) gene. In the present study, the hippocampal function was explored by evaluating the ability of TAG/F3 mice to encode spatial and non-spatial relationships between discrete stimuli and to analyze an anxiety-related behavior. MATERIALS AND METHODS: To the first end, mice were placed in an "open-Field" containing five objects and, after three sessions of habituation (S2-S4), their reactivity to objects displacement (S5-S4) and object substitution (S7-S6) was examined.To the second end, mice were placed in the "elevated zero maze", a standard test to explore the anxiety-related behavior, in order to study, in transgenic mice, the effects of F3 misexpression on emotional reactivity by measuring the avoidance of the unsheltered open sectors. RESULTS: Statistical evaluations of reactivity to object novelty, TAG-F3 mice showed a lower DO exploration with respect to wild-type mice and, regarding DOs, TAG/F3 mice interacted less than wild-type mice, showing an impaired spatial change response. Furthermore, the number of HDIPS in transgenic TAG/F3 mice resulted significantly lower with respect to the controls (wild type). CONCLUSIONS: These results indicate that the coordinated expression of axonal adhesive glycoproteins may be relevant for the functional maturation of the hippocampus.


Subject(s)
Behavior, Animal/physiology , Contactin 1/physiology , Animals , Anxiety/genetics , Anxiety/psychology , Axons/physiology , Contactin 1/genetics , Female , Hippocampus/growth & development , Hippocampus/physiology , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Motor Activity/physiology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...