Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Artif Intell Med ; 143: 102583, 2023 09.
Article in English | MEDLINE | ID: mdl-37673557

ABSTRACT

We present a method for training neural networks with synthetic electrocardiograms that mimic signals produced by a wearable single lead electrocardiogram monitor. We use domain randomization where the synthetic signal properties such as the waveform shape, RR-intervals and noise are varied for every training example. Models trained with synthetic data are compared to their counterparts trained with real data. Detection of r-waves in electrocardiograms recorded during different physical activities and in atrial fibrillation is used to assess the performance. By allowing the randomization of the synthetic signals to increase beyond what is typically observed in the real-world data the performance is on par or superseding the performance of networks trained with real data. Experiments show robust model performance using different seeds and on different unseen test sets that were fully separated from the training phase. The ability of the model to generalize well to hidden test sets without any specific tuning provides a simple and explainable alternative to more complex adversarial domain adaptation methods for model generalization. This method opens up the possibility of extending the use of synthetic data towards domain insensitive cardiac disease classification when disease specific a priori information is used in the electrocardiogram generation. Additionally, the method provides training with free-to-collect data with accurate labels, control of the data distribution eliminating class imbalances that are typically observed in health-related data, and the generated data is inherently private.


Subject(s)
Atrial Fibrillation , Electrocardiography , Humans , Random Allocation , Atrial Fibrillation/diagnosis , Exercise , Neural Networks, Computer
2.
Sensors (Basel) ; 22(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36015816

ABSTRACT

Accurate peak determination from noise-corrupted photoplethysmogram (PPG) signal is the basis for further analysis of physiological quantities such as heart rate. Conventional methods are designed for noise-free PPG signals and are insufficient for PPG signals with low signal-to-noise ratio (SNR). This paper focuses on enhancing PPG noise-resiliency and proposes a robust peak detection algorithm for PPG signals distorted due to noise and motion artifact. Our algorithm is based on convolutional neural networks (CNNs) with dilated convolutions. We train and evaluate the proposed method using a dataset collected via smartwatches under free-living conditions in a home-based health monitoring application. A data generator is also developed to produce noisy PPG data used for model training and evaluation. The method performance is compared against other state-of-the-art methods and is tested with SNRs ranging from 0 to 45 dB. Our method outperforms the existing adaptive threshold, transform-based, and machine learning methods. The proposed method shows overall precision, recall, and F1-score of 82%, 80%, and 81% in all the SNR ranges. In contrast, the best results obtained by the existing methods are 78%, 80%, and 79%. The proposed method proves to be accurate for detecting PPG peaks even in the presence of noise.


Subject(s)
Photoplethysmography , Signal Processing, Computer-Assisted , Algorithms , Artifacts , Heart Rate/physiology , Motion , Neural Networks, Computer , Photoplethysmography/methods
3.
JMIR Med Inform ; 10(4): e33875, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35442214

ABSTRACT

BACKGROUND: Preterm birth (PTB), a common pregnancy complication, is responsible for 35% of the 3.1 million pregnancy-related deaths each year and significantly affects around 15 million children annually worldwide. Conventional approaches to predict PTB lack reliable predictive power, leaving >50% of cases undetected. Recently, machine learning (ML) models have shown potential as an appropriate complementary approach for PTB prediction using health records (HRs). OBJECTIVE: This study aimed to systematically review the literature concerned with PTB prediction using HR data and the ML approach. METHODS: This systematic review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. A comprehensive search was performed in 7 bibliographic databases until May 15, 2021. The quality of the studies was assessed, and descriptive information, including descriptive characteristics of the data, ML modeling processes, and model performance, was extracted and reported. RESULTS: A total of 732 papers were screened through title and abstract. Of these 732 studies, 23 (3.1%) were screened by full text, resulting in 13 (1.8%) papers that met the inclusion criteria. The sample size varied from a minimum value of 274 to a maximum of 1,400,000. The time length for which data were extracted varied from 1 to 11 years, and the oldest and newest data were related to 1988 and 2018, respectively. Population, data set, and ML models' characteristics were assessed, and the performance of the model was often reported based on metrics such as accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve. CONCLUSIONS: Various ML models used for different HR data indicated potential for PTB prediction. However, evaluation metrics, software and package used, data size and type, selected features, and importantly data management method often remain unjustified, threatening the reliability, performance, and internal or external validity of the model. To understand the usefulness of ML in covering the existing gap, future studies are also suggested to compare it with a conventional method on the same data set.

SELECTION OF CITATIONS
SEARCH DETAIL