Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 109: 110597, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228991

ABSTRACT

Developing new nanocarriers and understanding the interactions between the drug and host molecules in the nanocarrier at the molecular level is of importance for future of nanomedicine. In this work, we synthesized and characterized a series of iron oxide nanoparticles (IONPs) functionalized with different organic molecules (citric acid, α-cyclodextrin, and citric acid/α-cyclodextrin composite). It was found that incorporation of citric acid into the α-cyclodextrin had negligible effect on the adsorption efficiency (<5%) of citric acid/α-cyclodextrin functionalized IONPs, while the isotherm adsorption data were well described by the Langmuir isotherm model (qmax = 2.92 mg/g at T = 25 °C and pH = 7). In addition, the developed nanocarrier showed pH-responsive behavior for releasing the quercetin molecules as drug model, where the Korsmeyer-Peppas model could describe the release profile with Fickian diffusion (n < 0.45 for at all pH and temperatures). Then, Density functional theory was applied to calculate the absolute binding energies (ΔEb) of the complexation of quercetin with different host molecules in the developed nanocarriers. The calculated energies are as follow: 1) quercetin and citric acid: ΔEb = -16.58 kcal/mol, 2) quercetin and α-cyclodextrin: ΔEb = -46.98 kcal/mol, and 3) quercetin and citric acid/α-cyclodextrin composite: ΔEb = -40.15 kcal/mol. It was found that quercetin tends to interact with all hosts via formation of hydrogen bonds and van der Waals interactions. Finally, the cytotoxicity of the as-developed nanocarriers was evaluated using MTT assay and both normal NIH-3T3 and cancereous HeLa cells. The cell viability results showed that the quercetin could be delivered effectively to the HeLa cells due to the acidic environment inside the cells with minimum effect on the viability of NIH-3T3 cells. These results might open a new window to design of stimuli-responsive nanocarriers for drug delivery applications.


Subject(s)
Citric Acid , Drug Carriers , Magnetite Nanoparticles/chemistry , Quercetin , alpha-Cyclodextrins , Animals , Citric Acid/chemistry , Citric Acid/pharmacokinetics , Citric Acid/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Quercetin/chemistry , Quercetin/pharmacokinetics , Quercetin/pharmacology , alpha-Cyclodextrins/chemistry , alpha-Cyclodextrins/pharmacokinetics , alpha-Cyclodextrins/pharmacology
2.
Biomaterials ; 232: 119707, 2020 02.
Article in English | MEDLINE | ID: mdl-31874428

ABSTRACT

Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the "pigments of life". They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review.


Subject(s)
Metal Nanoparticles , Nanocomposites , Nanoparticles , Photochemotherapy , Porphyrins , Animals , Gold , Mice , Mice, Nude , Theranostic Nanomedicine , Tissue Distribution
3.
Int J Pharm ; 569: 118580, 2019 Oct 05.
Article in English | MEDLINE | ID: mdl-31374239

ABSTRACT

In this study, optimized cephalexin-loaded niosomal formulations based on span 60 and tween 60 were prepared as a promising drug carrier system. The niosomal formulations were characterized using a series of techniques such as scanning electron microscopy, Fourier transformed infrared spectroscopy, dynamic light scattering, and zeta potential measurement. The size and drug encapsulation efficiency are determined by the type and composition of surfactant. The developed niosomal formulations showed great storage stability up to 30 days with low change in size and drug entrapment during the storage, making them potential candidates for real applications. Moreover, the prepared niosomes showed negligible cytotoxicity for HepG2 cells, measured by MTT assay. The antibacterial properties of cephalexin-loaded niosome were investigated using S. aureus and E. coli as gram-positive and gram-negative bacteria, respectively. The results showed that the encapsulation of antibiotic drug in niosomal formulation could enhance the antibacterial efficiency of the drug, where the minimum inhibitory concentration was droped from 8 µg/mL (cephalexin) to 4 µg/mL (cephalexin-loaded niosome) and from 4 µg/mL (cephalexin) to 1 µg/mL (cephalexin-loaded niosome) against E. coli and S. aureus, respectively. The findings of our study show that the improvement of cephalexin bioavailability and prolonged drug release profile could be obtained by niosomal formulation as a favorable antibiotic drug delivery system.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Cephalexin/administration & dosage , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Cephalexin/chemistry , Drug Liberation , Drug Stability , Escherichia coli/growth & development , Hep G2 Cells , Humans , Liposomes , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...