Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Futur ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38055159

ABSTRACT

A 2-year field experiment was performed to test lithium chloride, LiCl, application in a normal beekeeping management system. The effect of LiCl on bee larval mortality, beehive weight (honey production) and Varroa mite mortality were tested. Spectrometric quantification of Li on honey and the larval body were made to test the effectiveness of the presence of LiCl. Li was detected in bee larval bodies and in honey over 2 years, from 2018 to 2019. According to the results, no effect of LiCl on mite mortality or bee larval mortality was detected in the first year of application. By assessing the weight variation of beehives, only one LiCl-treated hive showed a significantly higher weight, whereas no other differences were detected between treatments and control. The same trend seen in 2018 was repeated in 2019, while a total bee larval mortality was observed after the first LiCl application, and still no differences in Varroa mite mortality were observed. According to these results, it was concluded that LiCl has no effect on Varroa mite mortality during normal beekeeping practice; furthermore, the recommended amount of treatment (25 mM) had a lethal effect (i.e., total mortality) on larvae following repeated applications.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35745301

ABSTRACT

57Fe transmission and conversion electron Mössbauer spectroscopy as well as XRD were used to study the effect of swift heavy ion irradiation on stress-annealed FINEMET samples with a composition of Fe73.5Si13.5Nb3B9Cu1. The XRD of the samples indicated changes neither in the crystal structure nor in the texture of irradiated ribbons as compared to those of non-irradiated ones. However, changes in the magnetic anisotropy both in the bulk as well as at the surface of the FINEMET alloy ribbons irradiated by 160 MeV 132Xe ions with a fluence of 1013 ion cm-2 were revealed via the decrease in relative areas of the second and fifth lines of the magnetic sextets in the corresponding Mössbauer spectra. The irradiation-induced change in the magnetic anisotropy in the bulk was found to be similar or somewhat higher than that at the surface. The results are discussed in terms of the defects produced by irradiation and corresponding changes in the orientation of spins depending on the direction of the stress generated around these defects.

3.
Microorganisms ; 9(10)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34683451

ABSTRACT

The last few years have witnessed the emergence of alternative measures to control plant parasitic nematodes (PPNs). We briefly reviewed the potential of compost and the direct or indirect roles of soil-dwelling organisms against PPNs. We compiled and assessed the most intensively researched factors of suppressivity. Municipal green waste (MGW) was identified and profiled. We found that compost, with or without beneficial microorganisms as biocontrol agents (BCAs) against PPNs, were shown to have mechanisms for the control of plant parasitic nematodes. Compost supports a diverse microbiome, introduces and enhances populations of antagonistic microorganisms, releases nematicidal compounds, increases the tolerance and resistance of plants, and encourages the establishment of a "soil environment" that is unsuitable for PPNs. Our compilation of recent papers reveals that while the scope of research on compost and BCAs is extensive, the role of MGW-based compost (MGWC) in the control of PPNs has been given less attention. We conclude that the most environmentally friendly and long-term, sustainable form of PPN control is to encourage and enhance the soil microbiome. MGW is a valuable resource material produced in significant amounts worldwide. More studies are suggested on the use of MGWC, because it has a considerable potential to create and maintain soil suppressivity against PPNs. To expand knowledge, future research directions shall include trials investigating MGWC, inoculated with BCAs.

4.
Ecol Evol ; 11(17): 11903-11914, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34522349

ABSTRACT

In this study, our aim was to assess several traits of cavity-nesting Hymenopteran taxa in a low-intensity agricultural landscape in Transylvania. The study took place between May and August 2018 at eight study sites in the hilly mountainous central part of Romania, where the majority of the landscape is used for extensive farming or forestry. During the processing of the trap nest material, we recorded several traits regarding the nests of different cavity-nesting Hymenopteran taxa and the spider prey found inside the nests of the spider-hunting representatives of these taxa. We also evaluated the relationship between the edge density and proportion of low-intensity agricultural areas surrounding the study sites and some of these traits. The majority of nests were built by the solitary wasp genus Trypoxylon, followed by the solitary wasp taxa Dipogon and Eumeninae. Solitary bees were much less common, with Hylaeus being the most abundant genus. In the nests of Trypoxylon, we mostly found spider prey from the family of Araneidae, followed by specimens from the families of Linyphiidae and Theridiidae. In the nests of Dipogon, we predominantly encountered spider prey from the family of Thomisidae. We found significant effects of low-intensity agricultural areas for the genera of Auplopus, Megachile, Osmia, and the Thomisid prey of Dipogon. We also found that the spider prey of Trypoxylon was significantly more diverse at study sites with higher proportions of low-intensity agricultural areas. Our results indicate that solitary bees seem to be more abundant in areas, where the influence of human activities is stronger, while solitary wasps seem to rather avoid these areas. Therefore, we suggest that future studies not only should put more effort into sampling in low-intensity agricultural landscapes but also focus more on solitary wasp taxa, when sampling such an area.

5.
Sci Rep ; 11(1): 8147, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854143

ABSTRACT

Mass-flowering crop monocultures, like sunflower, cannot harbour a permanent pollinator community. Their pollination is best secured if both managed honey bees and wild pollinators are present in the agricultural landscape. Semi-natural habitats are known to be the main foraging and nesting areas of wild pollinators, thus benefiting their populations, whereas crops flowering simultaneously may competitively dilute pollinator densities. In our study we asked how landscape structure affects major pollinator groups' visiting frequency on 36 focal sunflower fields, hypothesising that herbaceous semi-natural (hSNH) and sunflower patches in the landscape neighbourhood will have a scale-dependent effect. We found that an increasing area and/or dispersion of hSNH areas enhanced the visitation of all pollinator groups. These positive effects were scale-dependent and corresponded well with the foraging ranges of the observed bee pollinators. In contrast, an increasing edge density of neighbouring sunflower fields resulted in considerably lower visiting frequencies of wild bees. Our results clearly indicate that the pollination of sunflower is dependent on the composition and configuration of the agricultural landscape. We conclude that an optimization of the pollination can be achieved if sufficient amount of hSNH areas with good dispersion are provided and mass flowering crops do not over-dominate the agricultural landscape.


Subject(s)
Bees/physiology , Crops, Agricultural/physiology , Helianthus/physiology , Animals , Crops, Agricultural/parasitology , Ecosystem , Helianthus/parasitology , Pollination , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...